首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type II phosphatidylinositol 4-kinase IIα (PI4KIIα) is the dominant phosphatidylinositol kinase activity measured in mammalian cells and has important functions in intracellular vesicular trafficking. Recently PI4KIIα has been shown to have important roles in neuronal survival and tumorigenesis. This study focuses on the relationship between membrane cholesterol levels, phosphatidylinositol 4-phosphate (PI4P) synthesis, and PI4KIIα mobility. Enzyme kinetic measurements, sterol substitution studies, and membrane fragmentation analyses all revealed that cholesterol regulates PI4KIIα activity indirectly through effects on membrane structure. In particular, we found that cholesterol levels determined the distribution of PI4KIIα to biophysically distinct membrane domains. Imaging studies on cells expressing enhanced green fluorescent protein (eGFP)-tagged PI4KIIα demonstrated that cholesterol depletion resulted in morphological changes to the juxtanuclear membrane pool of the enzyme. Lateral membrane diffusion of eGFP-PI4KIIα was assessed by fluorescence recovery after photobleaching (FRAP) experiments, which revealed the existence of both mobile and immobile pools of the enzyme. Sterol depletion decreased the size of the mobile pool of PI4KIIα. Further measurements revealed that the reduction in the mobile fraction of PI4KIIα correlated with a loss of trans-Golgi network (TGN) membrane connectivity. We conclude that cholesterol modulates PI4P synthesis through effects on membrane organization and enzyme diffusion.  相似文献   

2.
Phosphatidylinositol 3-kinase (PI3K) signaling pathway has diverse functions, including the regulation of cellular survival, proliferation, cell cycle, migration, angiogenesis and apoptosis. Among class I PI3Ks (PI3Kα, β, γ, δ), the PIK3CA gene encoding PI3K p110α is frequently mutated and overexpressed in a large portion of human cancers. Therefore, the inhibition of PI3Kα has been considered as a promising target for the development of a therapeutic treatment of cancer. In this study, we designed and synthesized a series of 4-aminoquinazoline derivatives and evaluated their antiproliferative activities against six cancer cell lines, including HCT-116, SK-HEP-1, MDA-MB-231, SNU638, A549 and MCF-7. Compound 6b with the most potent antiproliferative activity and without obvious cytotoxicity to human normal cells was selected for further biological evaluation. PI3K kinase assay showed that 6b has selectivity for PI3Kα distinguished from other isoforms. The western blot assay and PI3K kinase assay indicated that 6b effectively inhibited cell proliferation via suppression of PI3Kα kinase activity with an IC50 of 13.6?nM and subsequently blocked PI3K/Akt pathway activation in HCT116 cells. In addition, 6b caused G1 cell cycle arrest owing to the inhibition of PI3K signaling and induced apoptosis via mitochondrial dependent apoptotic pathway. Our findings suggested that 6b has a therapeutic value as an anticancer agent via PI3Kα inhibition.  相似文献   

3.
4.
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.  相似文献   

5.
6.
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking.  相似文献   

7.
<正>Phosphatidylinositol 4-kinaseⅡα(PI4KⅡα),the most abundant PI4K in mammalian cells,is best known for its essential role in providing the substrate for phosphatidylinositol 3-kinase(PI3K),an important kinase for phospholipid signaling.PI4KIIα also plays important roles in membrane trafficking,phagocytosis and the exo-endocytic cycle of synaptic vesicles.Its dysfunction results in tumor growth,spastic paraplegia and Gaucher’s disease.Therefore,PI4KIIα may potentially be an important drug target.  相似文献   

8.
Synthesis and SAR of 2-alkyloxazoles as class III phosphatidylinositol-4-kinase beta (PI4KIIIβ) inhibitors is described. These compounds demonstrate that inhibition of PI4KIIIβ leads to potent inhibition of HCV replication as observed in genotype (GT) 1a and 1b replicon and GT2a JFH1 virus assays in vitro.  相似文献   

9.
A series of 4-styrylcoumarin have been synthesized by Knoevenagel condensation between substituted 4-methylcoumarin-3-carbonitrile and different heterocyclic or aromatic aldehydes. 4-Methylcoumarin-3-carbonitrile has been synthesized by the base catalyzed reaction between substituted 2-hydroxyacetophenone and ethyl cyanoacetate. The structures of the newly synthesized compounds were confirmed by 1H NMR, IR and mass spectral analysis. All the compounds were evaluated for their anti-inflammatory activity (against TNF-α and IL-6) and anti-tubercular activity. Compounds 6a, 6h and 6j exhibited promising activity against IL-6 with 72-87% inhibition and compound 6v showed potent activity against TNF-α with 73% inhibition at 10 μM concentration. Whereas compounds 6n, 6o, 6r and 6u showed very good anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain at <6.25 μM.  相似文献   

10.
11.
12.
Phosphatidylinositol 4-kinase IIα (PtdIns4KIIα) localizes to the trans-Golgi network and endosomal compartments and has been implicated in the regulation of endosomal traffic, but the roles of both its enzymatic activity and the site of its action have not been elucidated. This study shows that PtdIns4KIIα is required for production of endosomal phosphatidylinositol 4-phosphate (PtdIns(4)P) on early endosomes and for the sorting of transferrin and epidermal growth factor receptor into recycling and degradative pathways. Depletion of PtdIns4KIIα with small interfering RNA significantly reduced the amount of vesicular PtdIns(4)P on early endosomes but not on Golgi membranes. Cells depleted of PtdIns4KIIα had an impaired ability to sort molecules destined for recycling from early endosomes. We further identify the Eps15 homology domain–containing protein 3 (EHD3) as a possible endosomal effector of PtdIns4KIIα. Tubular endosomes containing EHD3 were shortened and became more vesicular in PtdIns4KIIα-depleted cells. Endosomal PtdIns(4,5)P2 was also significantly reduced in PtdIns4KIIα-depleted cells. These results show that PtdIns4KIIα regulates receptor sorting at early endosomes through a PtdIns(4)P-dependent pathway and contributes substrate for the synthesis of endosomal PtdIns(4,5)P2.  相似文献   

13.
14.
Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in a variety of cellular signaling processes. It is a multifunctional enzyme with lipid and protein kinase activity that also acts as a scaffold protein. Although it is well known that membrane recruitment is essential for the phosphorylation of phosphoinositides, the cellular localization of PI3Kγ as a protein kinase remains unclear. It has merely been described that PI3Kγ protein kinase activity leading to MAPK activation seems to be restricted to a cytosolic localization. Here, we demonstrate that a hybrid-PI3Kγ having protein kinase, but not lipid kinase activity shows a similar cellular distribution with a high membrane association and comparable liposome binding behavior to wild-type PI3Kγ. Binding of PI3Kγ to liposomes mimicking the natural plasma membrane slightly stimulates autophosphorylation of PI3Kγ. However, liposomes containing an unphysiologically high amount of PI inhibit autophosphorylation of PI3Kγ. Finally, PI3Kγ bound to membrane fragments does not show autophosphorylation which is possibly due to protein–protein-interactions at the plasma membrane. This indicates that not only MAPK activation, but PI3Kγ protein kinase activity in general is localized in the cytosol.  相似文献   

15.
Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors α (PPARα) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs.Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.  相似文献   

16.
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.  相似文献   

17.
18.
19.
ABSTRACT

SIRT1, the best-characterized member of the sirtuin family of deacetylases, is involved in cancer, apoptosis, inflammation, and metabolism. Active regulator of SIRT1 (AROS) was the first identified direct regulator of SIRT1. An increasing number of reports have indicated that SIRT1 plays an important role in controlling brain tumors. Here, we demonstrated that depletion of SIRT1 and AROS increases doxorubicin-mediated apoptosis in human neuroblastoma SH-SY5Y cells. Glycogen synthase kinase 3β (GSK3β) promoted doxorubicin-mediated apoptosis, but this effect was abolished by overexpression of SIRT1 and AROS. Interestingly, SIRT1 and AROS interacted with GSK3β and increased inhibitory phosphorylation of GSK3β on Ser9. Finally, we determined that AROS cooperates with SIRT1 to suppress GSK3β acetylation. Taken together, our results suggest that SIRT1 and AROS inhibit GSK3β activity and provide additional insight into drug resistance in the treatment of neuroblastoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号