首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.  相似文献   

2.
Musculo-skeletal modelling, 3D printing of bone models and also custom design of relevant prostheses starts from accurate STL files. These are obtained from medical imaging after careful segmentation and 3D reconstruction using specialized software, but most of these are very expensive. The aim of the present study is to assess and compare alternative software available for free. Three freeware software were selected from the most popular, and one standard platform was made available at the institute of the authors. Using each of these four software and starting from available DICOM files obtained previously by a CT scanner, three different bone models were reconstructed from each of five different human anatomical areas for a total of 60 bone model reconstructions. A young radiographer performed the bone reconstruction without specific technical training. 3D spatial matching of corresponding anatomical models was also performed to determine distance-maps for the assessment of final surface quality. In all four software many valuable features were available, with minimum differences, and bone models of good quality were obtained. Large differences in file sizes (mean range over the five anatomical models 66-338) and in the number of triangles (870-1350 thousands) were found, with triangles for MByte ratio ranging from about 4 to 20 thousands. The distance-map analysis revealed that root mean square deviation averaged over the five anatomical models ranged from 0.13 to 2.21 mm for the six spatial matches between the four software. These software are suitable for 3D bone model reconstruction, and do not require special training, and as such these can open up opportunities for biomechanical modelling and medical education.  相似文献   

3.

Background

To study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined.

Methods

Forty-five computed tomography (CT) scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again.

Results

Paired t-tests were used to determine the significance, set to P<0.05, of all parameter data from the radiographic images and 3D printed models. Furthermore, 88.6% of all parameters of the cervical spine, 90% of all parameters of the thoracic spine, and 94% of all parameters of the lumbar spine had Intraclass Correlation Coefficient (ICC) values >0.800. The other ICC values were <0.800 and >0.600; none were <0.600.

Conclusion

In this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research.  相似文献   

4.
《Biotechnology advances》2017,35(5):521-529
Three-dimensional (3D) printers are a developing technology penetrating a variety of markets, including the medical sector. Since its introduction to the medical field in the late 1980s, 3D printers have constructed a range of devices, such as dentures, hearing aids, and prosthetics. With the ultimate goals of decreasing healthcare costs and improving patient care and outcomes, neurosurgeons are utilizing this dynamic technology, as well. Digital Imaging and Communication in Medicine (DICOM) can be translated into Stereolithography (STL) files, which are then read and methodically built by 3D Printers. Vessels, tumors, and skulls are just a few of the anatomical structures created in a variety of materials, which enable surgeons to conduct research, educate surgeons in training, and improve pre-operative planning without risk to patients. Due to the infancy of the field and a wide range of technologies with varying advantages and disadvantages, there is currently no standard 3D printing process for patient care and medical research. In an effort to enable clinicians to optimize the use of additive manufacturing (AM) technologies, we outline the most suitable 3D printing models and computer-aided design (CAD) software for 3D printing in neurosurgery, their applications, and the limitations that need to be overcome if 3D printers are to become common practice in the neurosurgical field.  相似文献   

5.
Fused Deposition Modeling (FDM), better known as 3D printing, has revolutionized modern manufacturing processes and the ever-increasing use of 3D printers is popular not least because of the wide range of materials available for printing. When applying the FDM process to the development of prototypes, it is possible to go from an idea to a first iteration of the product within a few hours, and from an initial concept to a final product within a few days depending on the complexity of the desired structure. We applied FDM-related open-source 3D software and a 3D printer to produce parts for devices being applied in wood anatomy and dendroecology. In this paper, we present the basic requirements for prototyping by showing detailed examples of new devices developed and produced using a 3D printer and related modeling software.  相似文献   

6.
Desktop‐grade fused deposition modeling (FDM) printers are popular because of compact sizes and affordable prices. If we are moving toward a future where desktop FDM printers are in every school and office, like conventional printers, then these machines will consume a large amount of energy and material. However, it is very difficult to evaluate the environmental impacts of FDM printers since there are so many different brands and types of printers using different raw materials under different scenarios. This study uses data from two different printing sites to evaluate the scenario and parameter uncertainty and variability in energy and material balances for FDM printers. Data from the two makerspaces provide insight into the material and energy consumption data using polylactic acid and acrylonitrile butadiene styrene (ABS) with four types of printers. The use of actual performance data allowed for the additional study of scrap ratio. Regressions provide insight into predictive factors for energy and material consumption. Monte Carlo simulations show the range of energy life cycle inventory values for the desktop‐grade FDM printers. From the regressions, Type A Pro was the most energy‐intensive machine. For material waste, an open‐access makerspace using ABS was associated with higher scrap ratio. Regression analysis indicates that the rate of material usage is not a strong predictor of waste rates. The amount of waste generated across both sites indicates that more ubiquitous access to FDM printing may create a significant addition to the waste stream.  相似文献   

7.
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and emoH@baF has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.  相似文献   

8.
The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.  相似文献   

9.
Background and purpose3D printing is rapidly evolving and further assessment of materials and technique is required for clinical applications. We evaluated 3D printed boluses with acrylonitrile butadiene styrene (ABS) and polylactide (PLA) at different infill percentage.Material and methodsA low-cost 3D printer was used. The influence of the air inclusion within the 3D printed boluses was assessed thoroughly both with treatment planning system (TPS) and with physical measurements. For each bolus, two treatment plans were calculated with Monte Carlo algorithm, considering the computed tomography (CT) scan of the 3D printed bolus or modelling the 3D printed bolus as a virtual bolus structure with a homogeneous density. Depth dose measurements were performed with Gafchromic films.ResultsHigh infill percentage corresponds to high density and high homogeneity within bolus material. The approximation of the bolus in the TPS as a homogeneous material is satisfying for infill percentages greater than 20%. Measurements performed with PLA boluses are more comparable to the TPS calculated profiles. For boluses printed at 40% and 60% infill, the discrepancies between calculated and measured dose distribution are within 5%.Conclusions3D printing technology allows modulating the shift of the build-up region by tuning the infill percentage of the 3D printed bolus in order to improve superficial target coverage.  相似文献   

10.
目的:探讨采用3D适形打印技术制备的羟基磷灰石/聚乳酸网状复合体在兔颅骨缺损中的修复作用及安全性。方法:以24只新西兰兔为研究对象,以羟基磷灰石/聚乳酸为材料,采用3D适形打印技术制备网状复合体,于兔颅骨顶部制成两个颅骨全层缺损,分别为孔A(左)和孔B(右),孔A(阳性对照组)以自体颅骨为修复材料,孔B(实验组)以复合体为修复材料,观察缺损修复区域的形态学、影像学(X线及CT扫描)及组织学检查结果。结果:植入后24周时,形态学显示:阳性对照组可见致密的骨组织修复,与缺损边缘界限不清,实验组中支架孔隙内纤维组织由新生骨质取代,且新生骨成熟度较提高,材料表面有部分吸收。CT扫描观察显示:冠状面上,阳性对照组缺损修复区域与周围正常骨组织融合为一体,实验组修复材料与缺损边缘融合紧密,与周围正常骨组织结合良好,部分边缘结合不连贯。组织学观察显示:实验组材料部分降解,材料间隔可见新生骨小梁。研究中无实验动物死亡,皮肤切口处缝合良好,无皮下积液,无移植物脱出、红肿感染等情况出现。结论:以3D适形打印技术制备的羟基磷灰石/聚乳酸复合体对兔颅骨缺损有较好的修复作用,能促进缺损区域新骨的形成和生长,且安全性较高。  相似文献   

11.
Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.  相似文献   

12.
目的:通过比较计算机断层扫描,三维重建图像和3D打印在手术中显示肺动脉分支的能力,探讨3D打印技术在周围型肺癌手术规划中的应用价值。方法:2018年1月-2018年12月,同一胸外科治疗组中接受电视胸腔镜择期右肺上叶切除手术的周围型肺癌患者30例。随机分为3组,每组10例,分别通过计算机断层扫描,三维重建图像和3D打印进行术前手术规划。分别记录每组手术规划中的右肺上叶动脉分支数目,然后将这些记录与术中实际所见进行比较。结果:各组间患者一般资料无统计学差异。所有患者均有完整的CT扫描、三维重建、3D打印和术中动脉分支数据,且都接受了VATS解剖性右肺上叶切除术,术中进行顺利,无中转开胸,无术中大出血,术后无明显并发症和围手术期死亡,皆顺利出院。CT组的右肺上叶动脉分支数量为1.5±0.52,3DI组为2.1±0.57,3DP组为2.2±0.63。CT组、3DI组和3DP组分别与手术中所见比较,CT组存在统计学差异(P=0.025),其他两组无统计学意义。结论:3D打印技术在周围型肺癌手术规划中的效果优于计算机断层扫描,比三维重建图像更加直观,建议推广。  相似文献   

13.
目的:通过3D打印技术建立患者脊柱的立体实物模型,并探讨其在脊柱侧凸矫形手术中的临床应用价值。方法:2013年9月~2017年8月的15例脊柱侧凸畸形患者,采集患者的薄层CT扫描数据,利用3D打印技术建立实物模型,术前模拟置钉、模拟截骨,完善术前规划,并按照术前计划进行手术。结果:所有患者均按照根据术前3D打印模型制定的手术方案完成手术,术中置钉顺利,置钉准确率为93.6%。所有患者术中、术后无神经、血管、内脏损伤等并发症。结论:3D打印技术为术者提供了更加直观、立体、即时的影像资料,能够完善术前规划,提高置钉准确率,降低手术风险,在脊柱矫形手术中应用前景广泛。  相似文献   

14.
Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments’ mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.  相似文献   

15.
Here, we describe a single micro‐CT scan with a spatial resolution of 10 μm of a 10‐day‐old adult male Schistocerca gregaria (Forskål) (Orthoptera: Acrididae) and we compare our tracheal volume (VT) determination with published work on the subject. We also illustrate the feasibility of performing non‐invasive ‘virtual dissection’ on insects after performing micro‐CT. These post‐processing steps can be performed using free downloadable 3‐D software. Finally, the values of producing stereo‐lithography (STL) files that can be viewed or used to print out 3‐D models as teaching aids are discussed.  相似文献   

16.
PurposeTo present characterization, process flow, and applications of 3D fabricated low density phantoms for radiotherapy quality assurance (QA).Material and methodsA Rostock 3D printer using polystyrene was employed to print slabs of varying relative electron densities (0.18–0.75). A CT scan was used to calibrate infill-to-density and characterize uniformity of the print. Two printed low relative density rods (0.18, 0.52) were benchmarked against a commercial CT-electron-density phantom. Density scaling of Anisotropic Analytical Algorithm (AAA) was tested with EBT3 film for a 0.57 slab. Gamma criterion of 3% and 3 mm was used for analysis.Results3D printed slabs demonstrated uniformity for densities 0.4–0.75. The printed 0.52 rod had close agreement with the commercial phantom. Dosimetric comparison for 0.57 density slab showed >95% agreement between calculation and measurements.Conclusion3D printing allows fabrication of variable density phantoms for QA needs of a small clinic.  相似文献   

17.
Computer-aided technologies have allowed new 3D modelling capabilities and engineering analyses based on experimental and numerical simulation. It has enormous potential for product development, such as biomedical instrumentation and implants. However, due to the complex shapes of anatomical structures, the accuracy of these technologies plays an important key role for adequate and accurate finite element analysis (FEA). The objective of this study was to determine the influence of the geometry variability between two digital models of a human model of the mandible. Two different shape acquisition techniques, CT scan and 3D laser scan, were assessed. A total of 130 points were controlled and the deviations between the measured points of the physical and 3D virtual models were assessed. The results of the FEA study showed a relative difference of 20% for the maximum displacement and 10% for the maximum strain between the two geometries.  相似文献   

18.
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.Key words: Medical applications of 3D printing, Urologic applications of 3D printing, BiofabricationA 3D printer is unlike the printers most commonly used in a urology office. 3D printing is also known as desktop fabrication or additive manufacturing. It is a prototyping process whereby a real object is created from a 3D computer-created design. The digital 3D model file is sent to the 3D printer, which prints the design one layer at a time, forming a 3D object.1The smallest 3D printer weighs 1.5 kg and costs approximately ≥1600. The biggest drawback for the individual small practice user is the relatively high cost of the printer.2 In addition to the cost of the hardware, the professional 3D software and 3D model design are likewise expensive3 and is beyond the budget of most urologic practices. A list of commercial 3D printers currently available is shown in
Industrial 3D-Printer Manufacturers
Stratasys (Eden Prairie, MN)
3D-Systems (Rock Hill, SC)
Personal 3D-Printer Manufacturers
Reprap.org (Bath, United Kingdom)
Makerbot Industries (New York, NY)
Ultimaker (Geldermalsen, Netherlands)
Fab@Home (Cornell University; Ithaca, NY)
Open in a separate window  相似文献   

19.
3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage     
《Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)》2016,32(12):1698-1706
PurposeDosimetric assessment of high dose rate (HDR) brachytherapy applicators, printed in 3D with acrylonitrile butadiene styrene (ABS) at different infill percentage.Materials and methodsA low-cost, desktop, 3D printer (Hamlet 3DX100, Hamlet, Dublin, IE) was used for manufacturing simple HDR applicators, reproducing typical geometries in brachytherapy: cylindrical (common in vaginal treatment) and flat configurations (generally used to treat superficial lesions). Printer accuracy was investigated through physical measurements. The dosimetric consequences of varying the applicator’s density by tuning the printing infill percentage were analysed experimentally by measuring depth dose profiles and superficial dose distribution with Gafchromic EBT3 films (International Specialty Products, Wayne, NJ). Dose distributions were compared to those obtained with a commercial superficial applicator.ResultsMeasured printing accuracy was within 0.5 mm. Dose attenuation was not sensitive to the density of the material. Surface dose distribution comparison of the 3D printed flat applicators with respect to the commercial superficial applicator showed an overall passing rate greater than 94% for gamma analysis with 3% dose difference criteria, 3 mm distance-to-agreement criteria and 10% dose threshold.ConclusionLow-cost 3D printers are a promising solution for the customization of the HDR brachytherapy applicators. However, further assessment of 3D printing techniques and regulatory materials approval are required for clinical application.  相似文献   

20.
Organ printing: computer-aided jet-based 3D tissue engineering   总被引:24,自引:0,他引:24  
Mironov V  Boland T  Trusk T  Forgacs G  Markwald RR 《Trends in biotechnology》2003,21(4):157-161
Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号