首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Arteries with high-grade stenoses may compress under physiologic conditions due to negative transmural pressure caused by high-velocity flow passing through the stenoses. To quantify the compressive conditions near the stenosis, a nonlinear axisymmetric model with fluid-wall interactions is introduced to simulate the viscous flow in a compliant stenotic tube. The nonlinear elastic properties of the tube (tube law) are measured experimentally and used in the model. The model is solved using ADINA (Automatic Dynamic Incremental Nonlinear Analysis), which is a finite element package capable of solving problems with fluid-structure interactions. Our results indicate that severe stenoses cause critical flow conditions such as negative pressure and high and low shear stresses, which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The pressure filed near a stenosis has a complex pattern not seen in one-dimensional models. Negative transmural pressure as low as -24 mmHg for a 78 percent stenosis by diameter is observed at the throat of the stenosis for a downstream pressure of 30 mmHg. Maximum shear stress as a high as 1860 dyn/cm2 occurs at the throat of the stenoses, while low shear stress with reversed direction is observed right distal to the stenosis. Compressive stresses are observed inside the tube wall. The maximal principal stress and hoop stress in the 78 percent stenosis are 80 percent higher than that from the 50 percent stenosis used in our simulation. Flow rates under different pressure drop conditions are calculated and compared with experimental measurements and reasonable agreement is found for the prebuckling stage.  相似文献   

2.
An analytical model of joint contact   总被引:4,自引:0,他引:4  
The stress distribution in the region of contact between a layered elastic sphere and a layered elastic cavity is determined using an analytical model to stimulate contact of articulating joints. The purpose is to use the solution to analyze the effects of cartilage thickness and stiffness, bone stiffness and joint curvature on the resulting stress field, and investigate the possibility of cracking of the material due to tensile and shear stresses. Vertical cracking of cartilage as well as horizontal splitting at the cartilage-calcified cartilage interface has been observed in osteoarthritic joints. The current results indicate that for a given system (material properties mu and nu constant), the stress distribution is a function of the ratio of contact radius to layer thickness (a/h), and while tensile stresses are seen to occur only when a/h is small, tensile strain is observed for all a/h values. Significant shear stresses are observed at the cartilage-bone interface. Softening of cartilage results in an increase in a/h, and a decrease in maximum normal stress. Cartilage thinning increases a/h and the maximum contact stress, while thickening has the opposite effect. A reduction in the indenting radius reduces a/h and increases the maximum normal stress. Bone softening is seen to have negligible effect on the resulting contact parameters and stress distribution.  相似文献   

3.
A boundary layer model for wall shear stress in arterial stenosis   总被引:1,自引:0,他引:1  
This paper proposes a model for wall shear stress in arterial stenosis based on boundary layer theory. Wall shear stress estimates are obtained by solving the momentum integral equation using the method proposed by Walz and applying this method to various stenosis geometries for Reynolds numbers (Re) of Re = 59-1000. Elevated wall shear stress may be of importance when considering thrombosis and vascular erosion in stenosis, as well as the potential for debris from the stenotic area to 'break away' and cause further pathology. The values of shear stress obtained using the model in this study agree well with published values of wall shear stress. When compared to a previously published boundary layer model utilizing the Thwaites method (Reese and Thompson, 1998), the model proposed herein performs better at higher Re while the model utilizing the Thwaites method performs better at lower Re. Wall shear stresses are shown to increase with increasing stenosis (increased area reduction) for a given stenosis length, increase with increasing Re for a given stenosis geometry, and increase for steeper stenosis of the same constriction. The boundary layer model proposed can be easily implemented by clinical researchers to provide in vivo estimates of wall shear stress through arterial stenoses.  相似文献   

4.
In this paper, we investigate pulsatile flow through a constricted tube with the aim of assessing the effect of stenosis morphology on hemodynamic parameters. The fluid-solid interaction of pulsatile flow through a compliant tube with elastic walls was simulated using an arbitrary Lagrangian-Eulerian (ALE) finite-element method. We consider blood flow through various mild stenoses of 25.8% severity in diameter with trapezoidal and bell-like morphologies at a fixed Womersley number of 7.75. The results show that the distribution of the time-averaged wall shear stress (TAWSS), which is the main factor affecting the hemodynamic parameters, strongly depends on the axial stretch of the stenosis; elongation of the stenotic region increases by 41.1% the maximum TAWSS for stenoses of trapezoidal morphology whereas the maximum TAWSS decreases by 14.8% for the corresponding stenoses of bell-like morphology. The present findings indicate that risk factors due to atherosclerosis may vary in a complicated manner as an atheromatous plaque gradually builds up and morphs with time.  相似文献   

5.
Arterial embolism is responsible for the death of lots of people who suffers from heart diseases. The major risk of embolism in upper limbs is that the ruptured particles are brought into the brain, thus stimulating neurological symptoms or causing the stroke. We presented a computational model using fluid-structure interactions (FSI) to investigate the physical motion of a blood clot inside the human common carotid artery. We simulated transportation of a buoyant embolus in an unsteady flow within a finite length tube having stenosis. Effects of stenosis severity and embolus size on arterial hemodynamics were investigated. To fulfill realistic nonlinear property of a blood clot, a rubber/foam model was used. The arbitrary Lagrangian-Eulerian formulation (ALE) and adaptive mesh method were used inside fluid domain to capture the large structural interfacial movements. The problem was solved by simultaneous solution of the fluid and the structure equations. Stress distribution and deformation of the clot were analyzed and hence, the regions of the embolus prone to lysis were localized. The maximum magnitude of arterial wall shear stress during embolism occurred at a short distance proximal to the throat of the stenosis. Through embolism, arterial maximum wall shear stress is more sensitive to stenosis severity than the embolus size whereas role of embolus size is more significant than the effect of stenosis severity on spatial and temporal gradients of wall shear stress downstream of the stenosis and on probability of clot lysis due to clot stresses while passing through the stenosis.  相似文献   

6.
Shear stress plays a pivotal role in pathogenesis of coronary heart disease. The spatial and temporal variation in hemodynamics of blood flow, especially shear stress, is dominated by the vessel geometry. The goal of the present study was to investigate the effect of 2D and 3D geometries on the numerical modeling of coronary blood flow and shear stress distribution. We developed physiologically realistic 2D and 3D models (with similar geometries) of the human left coronary artery under normal and stenosis conditions (30%, 60%, and 80%) using PROE (WF 3). Transient blood flows in these models were solved using laminar and turbulent (k-ω) models using a computational fluid dynamics solver, FLUENT (v6.3.26). As the stenosis severity increased, both models predicted a similar pattern of increased shear stress at the stenosis throat, and in recirculation zones formed downstream of the stenosis. The 2D model estimated a peak shear stress value of 0.91, 2.58, 5.21, and 10.09 Pa at the throat location under normal, 30%, 60%, and 80% stenosis severity. The peak shear stress values at the same location estimated by the 3D model were 1.41, 2.56, 3.15, and 13.31 Pa, respectively. The 2D model underestimated the shear stress distribution inside the recirculation zone compared with that of 3D model. The shear stress estimation between the models diverged as the stenosis severity increased. Hence, the 2D model could be sufficient for analyzing coronary blood flow under normal conditions, but under disease conditions (especially 80% stenosis) the 3D model was more suitable.  相似文献   

7.
A new model is used to analyze the fully coupled problem of pulsatile blood flow through a compliant, axisymmetric stenotic artery using the finite element method. The model uses large displacement and large strain theory for the solid, and the full Navier-Stokes equations for the fluid. The effect of increasing area reduction on fluid dynamic and structural stresses is presented. Results show that pressure drop, peak wall shear stress, and maximum principal stress in the lesion all increase dramatically as the area reduction in the stenosis is increased from 51 to 89 percent. Further reductions in stenosis cross-sectional area, however, produce relatively little additional change in these parameters due to a concomitant reduction in flow rate caused by the losses in the constriction. Inner wall hoop stretch amplitude just distal to the stenosis also increases with increasing stenosis severity, as downstream pressures are reduced to a physiological minimum. The contraction of the artery distal to the stenosis generates a significant compressive stress on the downstream shoulder of the lesion. Dynamic narrowing of the stenosis is also seen, further augmenting area constriction at times of peak flow. Pressure drop results are found to compare well to an experimentally based theoretical curve, despite the assumption of laminar flow.  相似文献   

8.
Flow patterns and flow-related stresses contribute to the characterization of health risks, particularly the risk of plaque rupture, posed by a particular atherosclerotic stenosis. Blood flow in the presence of significant plaque deposits is investigated, and the influence of factors such as stenosis morphology and surface irregularity is evaluated. Solutions for three-dimensional, unsteady flow in these stenotic vessels are obtained for an incompressible, Newtonian fluid. The equations of motion are solved numerically using a finite volume formulation. The resulting flow patterns and shear and normal stresses are interpreted with respect to diagnostic implications, including the possibility of plaque rupture. The inadequacy of "percent stenosis" to characterize the risks posed by a particular plaque is demonstrated. Surface irregularity, stenosis aspect ratio, and the shape of the pulsatile waveform all have considerable influence on the flow field and on the stresses on the plaque. A measure of surface irregularity or plaque symmetry, in particular, may complement percent stenosis in diagnosing the risk of plaque rupture.  相似文献   

9.
The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal side of the stenosis, near the outer wall in the curved artery with no stenosis. The lumen area near the inner wall distal to the stenosis region experienced a lower WSS during the entire cardiac cycle. Among the factors of stenosis size, blood viscosity, and flow rate, the size of the stenosis has the most significant effect on the spatial and temporal WSS distributions qualitatively and quantitatively.  相似文献   

10.
Elevated turbulent shear stresses associated with sufficient exposure times are potentially damaging to blood constituents. Since these conditions can be induced by mechanical heart valves, the objectives of this study were to locate the maximum turbulent shear stress in both space and time and to determine how the maximum turbulent shear stress depends on the cardiac flow rate in a pulsatile flow downstream of a tilting disk valve. Two-component, simultaneous, correlated laser velocimeter measurements were recorded at four different axial locations and three different flow rates in a straight tube model of the aorta. All velocity data were ensemble averaged within a 15 ms time window located at approximately peak systolic flow over more than 300 cycles. Shear stresses as high as 992 dynes/cm2 were found 0.92 tube diameters downstream of the monostrut, disk valve. The maximum turbulent shear stress was found to scale with flow rate to the 0.72 power. A repeatable starting vortex was shed from the disk at the beginning of each cycle.  相似文献   

11.
After total hip replacement (THR) impingement of the implant components causes shear stresses at the acetabular implant-bone interface. In the current study the finite element method (FEM) was applied to analyse the shear stresses at a fully bonded implant-bone interface assuming total ingrowth of the cup. The FE model of a press-fit acetabular component and the proximal part of the femoral component incorporates non-linear material and large sliding contact. The model was loaded with a superior-medial joint load of 435 N simulating a two-legged stance. Starting at initial impingement, the femoral component was medially rotated by 20 degrees . The peak tilting shear stress of -2.6 MPa at the impingement site takes effect towards the pole of the cup. The torsional shear stress at the impingement site is zero. On each side of the impingement site, there are extrema of torsional shear stress reaching -1.8 and 1.8 MPa, respectively. The global peak shear stress during impingement may indicate a possible starting point for cup loosening. The pattern of the torsional shear stresses suggests that besides the symmetric lever-out, an additional asymmetrical tilting of the cup occurs that can be explained by the orientation of the applied joint load.  相似文献   

12.
Numerical modeling of pulsatile turbulent flow in stenotic vessels   总被引:5,自引:0,他引:5  
Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-omega turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-epsilon turbulence model and the standard k-epsilon model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.  相似文献   

13.
Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry) and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases) were studied for a family of eight matched-geometry models incorporating independently varied plaque features – i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration). The level of laminar (ensemble-averaged) shear stress increased with increasing stenosis severity resulting in 2–16 Pa for free shear stress (FSS) and approximately double (4–36 Pa) for wall shear stress (WSS). Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque) resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms) through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent) shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.  相似文献   

14.
Different shapes of pulsatile flows through a model of stenosis are experimentally and numerically modeled to validate both methods and to determine the wall shear stress temporal evolution downstream from the stenosis. Two-dimensional velocity measurements are performed in a 75% severity stenosis using a pulsed Doppler ultrasonic velocimeter. Finite element package is employed for the transient numerical simulations. Polynomial method, based on the experimental velocity values, is proposed to determine the wall shear stress temporal evolution. There is a good agreement between the numerical and experimental results. The wall shear stress temporal analysis shows oscillating wall shear stress values during the cycle with high wall shear stress values at the throat of about 120 dyn/cm2, and low values downstream from the stenosis of about - 2.5 dyn/cm2. The key result of the study is that the presence of the stenosis leads the artery to work in a direction which is opposite to the direction of a healthy artery.  相似文献   

15.
Hemodynamics factors and biomechanical forces play key roles in atherogenesis, plaque development and final rupture. In this paper, we investigated the flow field and stress field for different degrees of stenoses under physiological conditions. Disease is modelled as axisymmetric cosine shape stenoses with varying diameter reductions of 30%, 50% and 70%, respectively. A simulation model which incorporates fluid-structure interaction, a turbulence model and realistic boundary conditions has been developed. The results show that wall motion is constrained at the throat by 60% for the 30% stenosis and 85% for the 50% stenosis; while for the 70% stenosis, wall motion at the throat is negligible through the whole cycle. Peak velocity at the throat varies from 1.47 m/s in the 30% stenosis to 3.2m/s in the 70% stenosis against a value of 0.78 m/s in healthy arteries. Peak wall shear stress values greater than 100 Pa were found for > or =50% stenoses, which in vivo could lead to endothelial stripping. Maximum circumferential stress was found at the shoulders of plaques. The results from this investigation suggest that severe stenoses inhibit wall motion, resulting in higher blood velocities and higher peak wall shear stress, and localization of hoop stress. These factors may contribute to further development and rupture of plaques.  相似文献   

16.
The unsteady blood flow through an indented tube with atherosclerosis in the presence of mild stenosis has been studied numerically by finite difference method. The effects of hematocrit, frequency parameter, height of stenosis, parameter determining the shape of the constriction on velocity field, volumetric flow rate, pressure gradient of the fluid in stenotic region and wall shear stress at the surface of stenosis are obtained and shown graphically.  相似文献   

17.
In order to determine the response of fixed and nonfixed cells adherent to a solid substratum to shear stress, human fibroblasts were allowed to adhere and spread on either hydrophilic glass or hydrophobic Fluoroethylene-propylene (FEP-Teflon) and fixed with glutaraldehyde. Then, the cells were exposed to an incrementally loaded shear stress in a parallel plate flow chamber up to shear stresses of about 500 dynes/cm2, followed by exposure to a liquid-air interface passage. The cellular detachment was compared with the one of nonfixed cells. In case of fixed cells, 50% of the adhering cells detached from FEP-Teflon at a shear stress of 350 dynes/cm2, whereas 50% of the adhering, nonfixed cells detached already at a shear stress of 20 dynes/cm2. No fixed cells detached from glass for shear stresses up to at least 500 dynes/cm2. More than 50% of the nonfixed cells were detached from glass at a shear stress of 350 dynes/cm2. Furthermore, the shape and morphology of fixed cells did not change during the incrementally loaded flow, in contrast to the ones of nonfixed cells, which clearly rounded up prior to detachment.  相似文献   

18.
Severe stenosis may cause critical flow and wall mechanical conditions related to artery fatigue, artery compression, and plaque rupture, which leads directly to heart attack and stroke. The exact mechanism involved is not well understood. In this paper a nonlinear three-dimensional thick-wall model with fluid-wall interactions is introduced to simulate blood flow in carotid arteries with stenosis and to quantify physiological conditions under which wall compression or even collapse may occur. The mechanical properties of the tube wall were selected to match a thick-wall stenosis model made of PVA hydrogel. The experimentally measured nonlinear stress-strain relationship is implemented in the computational model using an incremental linear elasticity approach. The Navier-Stokes equations are used for the fluid model. An incremental boundary iteration method is used to handle the fluid-wall interactions. Our results indicate that severe stenosis causes considerable compressive stress in the tube wall and critical flow conditions such as negative pressure, high shear stress, and flow separation which may be related to artery compression, plaque cap rupture, platelet activation, and thrombus formation. The stress distribution has a very localized pattern and both maximum tensile stress (five times higher than normal average stress) and maximum compressive stress occur inside the stenotic section. Wall deformation, flow rates, and true severities of the stenosis under different pressure conditions are calculated and compared with experimental measurements and reasonable agreement is found.  相似文献   

19.
In the present study a two-dimensional finite element model for incompressible Newtonian flow is applicated to the modelling of carotid artery flow. In earlier studies, the numerical model was validated experimentally for several flow configurations. In general the pulsatile flow is characterized by reversed flow regions at the non-divider side walls of both the internal and external carotid arteries. The unsteadiness of the flow is associated with rather complex spatial and temporal velocity distributions and leads to temporal variations of the location and length of the reversed flow regions. As a consequence, pronounced spatial and temporal variations in the wall shear stresses are found. At the non-divider side walls, wall shear stresses are relatively low and exhibits an oscillatory behaviour in space and time. At the divider side walls, wall shear stresses are relatively high and approximately follow the flow rate distribution in time. The aim of this study is not only to present two-dimensional calculations but also to compare the calculated two-dimensional velocity profiles with those from three-dimensional experiments. It is observed that in the common carotid artery and in the proximal parts of the internal and external carotid arteries, the two-dimensional numerical model provides valuable information with respect to the three-dimensional configuration. In the more distal parts of especially the internal carotid artery, deviations are found between the two-dimensional numerical and three-dimensional experimental model. These deviations can mainly be attributed to the neglect of the secondary velocity distribution in the two-dimensional model. In the two-dimensional numerical model the influence of a minor stenosis in the internal carotid artery is hardly distinguishable from a minor geometrical variation without stenosis. Full three-dimensional analyses of the influence of minor stenoses are needed to prove numerically whether in-vivo measurements of the axial velocity distribution are useful in the detection of minor stenoses.  相似文献   

20.
In this first part of a two-part paper, interelement stress compatible finite elements are developed and used to perform the stress analysis of a push-out test with a fixed interface. In the formulation, the required continuity of some of the stresses along either a specific interface or all interelement interfaces is enforced by a penalty procedure. The model is axisymmetric and consists of two cylinders attached to each other through the interface. Various relative material properties and boundary conditions are simulated in order to examine their effects on the interface stresses. Both loadings of axial compression force and axial torque are considered. The predicted results exhibit identical interelement stresses and displacements even when highly dissimilar materials are used. They also exhibit a complex state of interface stresses which depend on the geometry, material arrangement, boundary conditions, and loading. The variation of the shear stress is often highly nonuniform and the radial normal stresses are likely to be large. The present results, therefore, disagree with the common assumptions made in the pull-out tests in the orthopaedic applications. Finally, stress analysis of a number of possible testing configurations could lead to the design of an optimal pull-out test which maximizes the usefulness of the measured results in terms of the interface bond strength and factors affecting it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号