首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Jaeger S  Eriani G  Martin F 《FEBS letters》2004,556(1-3):265-270
The histone hairpin binding protein (HBP, also called SLBP, which stands for stem-loop binding protein) binds specifically to a highly conserved hairpin structure located in the 3' UTR of the cell-cycle-dependent histone mRNAs. HBP consists of a minimal central RNA binding domain (RBD) flanked by an N- and C-terminal domain. The yeast three-hybrid system has been used to investigate the critical residues of the human HBP involved in the binding of its target hairpin structure. By means of negative selections followed by positive selections, we isolated mutant HBP species. Our results indicate tight relationships between the RBD and the N- and C-terminal domains.  相似文献   

3.
Histone mRNAs are rapidly degraded at the end of S phase, and a 26-nucleotide stem-loop in the 3′ untranslated region is a key determinant of histone mRNA stability. This sequence is the binding site for stem-loop binding protein (SLBP), which helps to recruit components of the RNA degradation machinery to the histone mRNA 3′ end. SLBP is the only protein whose expression is cell cycle regulated during S phase and whose degradation is temporally correlated with histone mRNA degradation. Here we report that chemical inhibition of the prolyl isomerase Pin1 or downregulation of Pin1 by small interfering RNA (siRNA) increases the mRNA stability of all five core histone mRNAs and the stability of SLBP. Pin1 regulates SLBP polyubiquitination via the Ser20/Ser23 phosphodegron in the N terminus. siRNA knockdown of Pin1 results in accumulation of SLBP in the nucleus. We show that Pin1 can act along with protein phosphatase 2A (PP2A) in vitro to dephosphorylate a phosphothreonine in a conserved TPNK sequence in the SLBP RNA binding domain, thereby dissociating SLBP from the histone mRNA hairpin. Our data suggest that Pin1 and PP2A act to coordinate the degradation of SLBP by the ubiquitin proteasome system and the exosome-mediated degradation of the histone mRNA by regulating complex dissociation.  相似文献   

4.
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3′-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5 dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.  相似文献   

5.
Replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated, ending instead in a conserved stem-loop. The 3′ end of histone mRNA is required for histone mRNA translation, as is the stem-loop binding protein (SLBP), which binds the 3′ end of histone mRNA. We have identified five conserved residues in a 15-amino-acid region in the amino-terminal portion of SLBP, each of which is required for translation. Using a yeast two-hybrid screen, we identified a novel protein, SLBP-interacting protein 1 (SLIP1), that specifically interacts with this region. Mutations in any of the residues required for translation reduces SLIP1 binding to SLBP. The expression of SLIP1 in Xenopus oocytes together with human SLBP stimulates translation of a reporter mRNA ending in the stem-loop but not a reporter with a poly(A) tail. The expression of SLIP1 in HeLa cells also stimulates the expression of a green fluorescent protein reporter mRNA ending in a stem-loop. RNA interference-mediated downregulation of endogenous SLIP1 reduces the rate of translation of endogenous histone mRNA and also reduces cell viability. SLIP1 may function by bridging the 3′ end of the histone mRNA with the 5′ end of the mRNA, similar to the mechanism of translation of polyadenylated mRNAs.  相似文献   

6.
7.
FEM1A, FEM1B, and FEM1C are evolutionarily-conserved VHL-box proteins, the substrate recognition subunits of CUL2-RING E3 ubiquitin ligase complexes. Here, we report that FEM1 proteins are ancient regulators of Stem-Loop Binding Protein (SLBP), a conserved protein that interacts with the stem loop structure located in the 3′ end of canonical histone mRNAs and functions in mRNA cleavage, translation and degradation. SLBP levels are highest during S-phase coinciding with histone synthesis. The ubiquitin ligase complex SCFcyclin F targets SLBP for degradation in G2 phase; however, the regulation of SLBP during other stages of the cell cycle is poorly understood. We provide evidence that FEM1A, FEM1B, and FEM1C interact with and mediate the degradation of SLBP. Cyclin F, FEM1A, FEM1B and FEM1C all interact with a region in SLBP's N-terminus using distinct degrons. An SLBP mutant that is unable to interact with all 4 ligases is expressed at higher levels than wild type SLBP and does not oscillate during the cell cycle. We demonstrate that orthologues of SLBP and FEM1 proteins interact in C. elegans and D. melanogaster, suggesting that the pathway is evolutionarily conserved. Furthermore, we show that FEM1 depletion in C. elegans results in the upregulation of SLBP ortholog CDL-1 in oocytes. Notably, cyclin F is absent in flies and worms, suggesting that FEM1 proteins play an important role in SLBP targeting in lower eukaryotes.  相似文献   

8.
Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3' end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3' end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation.  相似文献   

9.
The stem-loop structure at the 3' end of replication-dependent histone mRNA is required for efficient pre-mRNA processing, localization of histone mRNA to the polyribosomes, and regulation of histone mRNA degradation. A protein, the stem-loop binding protein (SLBP), binds the 3' end of histone mRNA and is thought to mediate some or all of these processes. A mutant histone mRNA with two nucleotide changes in the loop was constructed and found to be transported inefficiently to the cytoplasm. The mutant histone mRNA, unlike the wild-type histone mRNA, was not rapidly degraded when DNA synthesis is inhibited, and was not stabilized upon inhibition of protein synthesis. The stem-loop binding protein (SLBP) has between a 20-50 fold greater affinity for the wild type histone stem-loop structure than for the mutant stem-loop structure, suggesting that the alteration in the efficiency of transport and the normal degradation pathway in histone mRNA may be due to the reduced affinity of the mutant stem-loop for the SLBP.  相似文献   

10.
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that are not polyadenylated. The cleavage of histone pre-mRNA to form the unique 3' end requires the U7 snRNP and the stem-loop binding protein (SLBP) that binds the 3' end of histone mRNA. U7 snRNP contains three novel proteins, Lsm10 and Lsm11, which are part of the core U7 Sm complex, and ZFP100, a Zn finger protein that helps stabilize binding of the U7 snRNP to the histone pre-mRNA by interacting with the SLBP/pre-mRNA complex. Using a reporter gene that encodes a green fluorescent protein mRNA ending in a histone 3' end and mimics histone gene expression, we demonstrate that ZFP100 is the limiting factor for histone pre-mRNA processing in vivo. The overexpression of Lsm10 and Lsm11 increases the cellular levels of U7 snRNP but has no effect on histone pre-mRNA processing, while increasing the amount of ZFP100 increases histone pre-mRNA processing but has no effect on U7 snRNP levels. We also show that knocking down the known components of U7 snRNP by RNA interference results in a reduction in cell growth and an unsuspected cell cycle arrest in early G(1), suggesting that active U7 snRNP is necessary to allow progression through G(1) phase to S phase.  相似文献   

11.
12.
The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3' untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.  相似文献   

13.
14.
Replication-dependent histone mRNAs end in a highly conserved 26-nt stem-loop structure. The stem-loop binding protein (SLBP), an evolutionarily conserved protein with no known homologs, interacts with the stem-loop in both the nucleus and cytoplasm and mediates nuclear-cytoplasmic transport as well as 3'-end processing of the pre-mRNA by the U7 snRNP. Here, we examined the affinity and specificity of the SLBP-RNA interaction. Nitrocellulose filter-binding experiments showed that the apparent equilibrium dissociation constant (Kd) between purified SLBP and the stem-loop RNA is 1.5 nM. Binding studies with a series of stem-loop variants demonstrated that conserved residues in the stem and loop, as well as the 5' and 3' flanking regions, are required for efficient protein recognition. Deletion analysis showed that 3 nt 5' of the stem and 1 nt 3' of the stem contribute to the binding energy. These data reveal that the high affinity complex between SLBP and the RNA involves sequence-specific contacts to the loop and the top of the stem, as well the base of the stem and its immediate flanking sequences. Together, these results suggest a novel mode of protein-RNA recognition that forms the core of a ribonucleoprotein complex central to the regulation of histone gene expression.  相似文献   

15.
Complexes of different electrophoretic mobility containing the stem-loop binding protein, a 45 kDa protein, bound to the stem-loop at the 3' end of histone mRNA, are present in both nuclear and cytoplasmic extracts from mammalian cells. We have determined the effect of changes in the loop, in the stem and in the flanking sequences on the affinity of the SLBP for the 3' end of histone mRNA. The sequence of the stem is particularly critical for SLBP binding. Specific sequences both 5' and 3' of the stem-loop are also required for high-affinity binding. Expanding the four base loop by one or two uridines reduced but did not abolish SLBP binding. RNA footprinting experiments show that the flanking sequences on both sides of the stem-loop are critical for efficient binding, but that cleavages in the loop do not abolish binding. Thus all three regions of the RNA sequence contribute to SLBP binding, suggesting that the 26 nt at the 3' end of histone mRNA forms a defined tertiary structure recognized by the SLBP.  相似文献   

16.
17.
Zhang M  Lam TT  Tonelli M  Marzluff WF  Thapar R 《Biochemistry》2012,51(15):3215-3231
In metazoans, the majority of histone proteins are generated from replication-dependent histone mRNAs. These mRNAs are unique in that they are not polyadenylated but have a stem-loop structure in their 3' untranslated region. An early event in 3' end formation of histone mRNAs is the binding of stem-loop binding protein (SLBP) to the stem-loop structure. Here we provide insight into the mechanism by which SLBP contacts the histone mRNA. There are two binding sites in the SLBP RNA binding domain for the histone mRNA hairpin. The first binding site (Glu129-Val158) consists of a helix-turn-helix motif that likely recognizes the unpaired uridines in the loop of the histone hairpin and, upon binding, destabilizes the first G-C base pair at the base of the stem. The second binding site lies between residues Arg180 and Pro200, which appears to recognize the second G-C base pair from the base of the stem and possibly regions flanking the stem-loop structure. We show that the SLBP-histone mRNA complex is regulated by threonine phosphorylation and proline isomerization in a conserved TPNK sequence that lies between the two binding sites. Threonine phosphorylation increases the affinity of SLBP for histone mRNA by slowing the off rate for complex dissociation, whereas the adjacent proline acts as a critical hinge that may orient the second binding site for formation of a stable SLBP-histone mRNA complex. The nuclear magnetic resonance and kinetic studies presented here provide a framework for understanding how SLBP recognizes histone mRNA and highlight possible structural roles of phosphorylation and proline isomerization in RNA binding proteins in remodeling ribonucleoprotein complexes.  相似文献   

18.
Histone mRNA levels are cell cycle regulated, and a major regulatory mechanism is restriction of stem-loop binding protein (SLBP) to S phase. Degradation of SLBP at the end of S phase results in cessation of histone mRNA biosynthesis, preventing accumulation of histone mRNA until SLBP is synthesized just before entry into the next S phase. Degradation of SLBP requires an SFTTP (58 to 62) and KRKL (95 to 98) sequence, which is a putative cyclin binding site. A fusion protein with the 58-amino-acid sequence of SLBP (amino acids 51 to 108) fused to glutathione S-transferase (GST) is sufficient to mimic SLBP degradation at late S phase. Using GST-SLBP fusion proteins as a substrate, we show that cyclin A/Cdk1 phosphorylates Thr61. Furthermore, knockdown of Cdk1 by RNA interference stabilizes SLBP at the end of S phase. Phosphorylation of Thr61 is necessary for subsequent phosphorylation of Thr60 by CK2 in vitro. Inhibitors of CK2 also prevent degradation of SLBP at the end of S phase. Thus, phosphorylation of Thr61 by cyclin A/Cdk1 primes phosphorylation of Thr60 by CK2 and is responsible for initiating SLBP degradation. We conclude that the increase in cyclin A/Cdk1 activity at the end of S phase triggers degradation of SLBP at S/G(2).  相似文献   

19.
A key factor involved in the processing of histone pre-mRNAs in the nucleus and translation of mature histone mRNAs in the cytoplasm is the stem-loop binding protein (SLBP). In this work, we have investigated SLBP nuclear transport and subcellular localization during the cell cycle. SLBP is predominantly nuclear under steady-state conditions and localizes to the cytoplasm during S phase when histone mRNAs accumulate. Consistently, SLBP mutants that are defective in histone mRNA binding remain nuclear. As assayed in heterokaryons, export of SLBP from the nucleus is dependent on histone mRNA binding, demonstrating that SLBP on its own does not possess any nuclear export signals. We find that SLBP interacts with the import receptors Impalpha/Impbeta and Transportin-SR2. Moreover, complexes formed between SLBP and the two import receptors are disrupted by RanGTP. We have further shown that SLBP is imported by both receptors in vitro. Three sequences in SLBP required for Impalpha/Impbeta binding were identified. Simultaneous mutation of all three sequences was necessary to abolish SLBP nuclear localization in vivo. In contrast, we were unable to identify an in vivo role for Transportin-SR2 in SLBP nuclear localization. Thus, only the Impalpha/Impbeta pathway contributes to SLBP nuclear import in HeLa cells.  相似文献   

20.
Stem-loop binding protein (SLBP) is an essential component of the histone pre-mRNA processing machinery. SLBP protein expression was examined during Drosophila development by using transgenes expressing hemagglutinin (HA) epitope-tagged proteins expressed from the endogenous Slbp promoter. Full-length HA-dSLBP complemented a Slbp null mutation, demonstrating that it was fully functional. dSLBP protein accumulates throughout the cell cycle, in contrast to the observed restriction of mammalian SLBP to S phase. dSLBP is located in both nucleus and cytoplasm in replicating cells, but it becomes predominantly nuclear during G2. dSLBP is present in mitotic cells and is down-regulated in G1 when cells exit the cell cycle. We determined whether mutation at previously identified phosphorylation sites, T120 and T230, affected the ability of the protein to restore viability and histone mRNA processing to dSLBP null mutants. The T120A SLBP restored viability and histone pre-mRNA processing. However, the T230A mutant, located in a conserved TPNK sequence in the RNA binding domain, did not restore viability and histone mRNA processing in vivo, although it had full activity in histone mRNA processing in vitro. The T230A protein is concentrated in the cytoplasm, suggesting that it is defective in nuclear targeting, and accounting for its failure to function in histone pre-mRNA processing in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号