首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1997 to 1999, Schizaphis graminum (Rondani), intensity (number per tiller) was estimated on 115 occasions from hard red winter wheat fields located throughout the major wheat growing regions of Oklahoma. A total of 32 and 83 fields was sampled during the fall and spring, respectively. The parameters of linear regressions relating the mean number of greenbugs per tiller (m) and the proportion of infested tillers (PT) differed significantly between fall and spring infestations. The PT-m linear model provided a good fit for data on S. graminum for fall and spring infestations at tally thresholds of 0, 1, 2, and 3. A tally threshold (T) represents the number of greenbugs present on a tiller before the tiller is classified as infested by >T greenbugs. A regression model with a tally threshold of 2 was the most precise for classifying S. graminum populations during fall growth of winter wheat because it explained a greater amount of the variation in the PT-m relationship (97%) than models with other tally thresholds. A separate spring model with a tally threshold of 1 was the most precise for classifying S. graminum populations during spring growth of winter wheat. Sequential sampling stop lines based on sequential probability ratio tests were calculated for economic thresholds of 3 or 6 greenbugs per tiller for fall infestations and 6 or 9 greenbugs per tiller for spring infestations. With the newly developed parameters, the average sample number required to classify greenbug populations near economic thresholds (as above or below the economic threshold) varied from 69 to 207. We expect that the sampling plans for greenbugs in winter wheat developed during this study will be efficient and useful tools for consultants and producers in the southern plains.  相似文献   

2.
Arbitrary green peach aphid, Myzus persicae (Sulzer), action thresholds (0, 5, 10, 20, and 40 aphids per 100 leaves) were tested in 3 yr of field experimentation to determine if they could be maintained and if they would significantly impact aphid densities and limit the incidence of potato leafroll virus (PLRV). In 1997 and 1998, significant linear relationships between thresholds and final percentage of PLRV (expressed as the percentage of tubers infected with PLRV) were observed: there was a trend toward lower PLRV incidence with decreasing action threshold in 1999. There were significant relationships between thresholds and mean number of apterous aphids in 1998 and 1999, indicating that reduction of PLRV resulted from reduced within-field spread by apterae. In almost all cases, aphid densities exceeded threshold levels from one week to the next, clearly showing that the thresholds could not be maintained. Over all experiments, four to nine seasonal applications of methamidophos were warranted by the magnitude of the threshold. Imidacloprid applied at planting to the zero aphid threshold reduced the number of methamidophos applications from nine in the insecticide-at-detection treatment to five. A revised within-field green peach aphid management plan is recommended that includes systemic insecticide applied at planting, aphid sampling every 3-4 d, and foliar insecticide application following aphid detection.  相似文献   

3.
The distribution of aphid predators within arable fields has been previously examined using pitfall traps. With this technique predominantly larger invertebrate species are captured, especially Carabidae, but the technique provides no estimate of density unless mark-recapture is used. However, many other numerically important aphid predators occur in arable fields and relatively little is known about their distribution patterns nor whether they exhibit a density-dependent response to patches of cereal aphids. Identification of the most effective predators can allow management practices to be developed accordingly. In this study, the distribution of cereal aphids and their predators was examined by suction sampling within a field of winter wheat in Devon, UK, along with visual estimates of weed patchiness. Sampling was conducted on four occasions in 1999 across a grid of 128 sample locations. The distribution of 11 predatory taxa from the Carabidae, Staphylinidae and Linyphiidae was examined. Additionally, the total number of aphid predators and a predation index were used in these analyses. Carabid adults and larvae, along with staphylinid larvae showed the strongest aggregation into patches and the most temporal stability in their distribution. Other taxa had more ephemeral distributions as did the cereal aphids. The distribution of carabid larvae was disassociated from the distribution of cereal aphids for the first two sampling occasions indicating biocontrol was occurring. Other predatory groups showed both association and disassociation. Carabid larvae, Bathyphantes and total numbers of Linyphiidae showed a strong correlation with weed cover for two of the sample dates. Cereal aphids were disassociated from weed cover on three sampling occasions.  相似文献   

4.
Integrated pest management programs tend to reduce the chemical input by enhancing the development of biological control. Cereal aphids cause important damages to winter wheat in Europe but are currently under the pressure of several parasitoid species (Braconidae: Aphidiinae). Previous ecological studies have reported the existence of an asynchrony between aphid and parasitoid populations in early spring in cereal cultures. Here, we tested the presence of rose bushes (Rosa rugosa) as a host plant for alternative aphid-host. Aphid and parasitoid densities were recorded for two years using the plant cutting sampling method. The main results were: (i) rose bushes constitute a potential reservoir of alternative aphid hosts species for a number of parasitoid and predator species, (ii) rose aphids appear earlier in spring and were more abundant than the aphids on wheat, (iii) parasitism activity in rose bushes is synchronized with cereal fields, however (iv) rose bushes management did not induce a decrease of cereal aphid population.  相似文献   

5.
Since the discovery of the soybean aphid, Aphis glycines Matsumura, in midwestern U.S. soybean, Glycine max L., in 2000, the aphid has become a significant economic pest. Basic information about estimating population density within fields is unknown. Therefore, we developed two sampling plans to efficiently characterize A. glycines densities. Enumerative and binomial sequential plans were developed using 89 data sets collected from 10 commercial fields sampled during 2001-2003. Re-sampling software was used to validate the enumerative plan on whole plant counts, based on Taylor's power law parameters (a = 9.157 and b = 1.543). For research applications, the enumerative plan was modified to provide an actual precision level of 0.10 (SE/mean), which resulted in an average sample number of 310 individual plants. For integrated pest management (IPM) purposes, we developed an enumerative plan with an actual precision of 0.25, which resulted in an average sample number of 38 individual plants. For IPM applications, the binomial plan will likely be more practical. Binomial plans were developed using two tally thresholds at five action thresholds. Final analysis of the operating characteristic curve for each plan indicated that the tally threshold of > or = 40 aphids per plant, and an action threshold of 0.837 (84% of the plants infested) provided the most correct treat (4%) and no-treat (95%) decisions, with very low incorrect treat (0.5%) and no-treat (0.5%) decisions. A tally threshold of > or = 40 aphids per plant and action thresholds of 84% of plants infested is equivalent to a mean density of 250 aphids per plant, a recently recommended economic threshold. Using this threshold, the minimum required sample number for the binomial plan was 11 plants.  相似文献   

6.
Exclusion barriers were used to manipulate numbers of polyphagous invertebrate predators so that their impact on cereal aphids and consequently wheat yield and quality could be examined. Experiments were conducted within the framework of the LINK Integrated Farming Systems Project which allowed comparisons to be made between the integrated and conventional farming systems under examination on a study farm in Hampshire, UK. Only in 1995 were the numbers of aphids per tiller, the aphid peak and rate of increase to the peak significantly greater in the exclusion areas where the density of polyphagous predators had been reduced. The maximum increase in aphids as a result of excluding polyphagous predators was 31%, which was equivalent to 130 aphid days. However, the polyphagous predators did not reduce the number of tillers infested. The relatively low impact of polyphagous predators was attributed to the aphid population phenology and greater effects may have been found had aphids infested the crops earlier in their development. Sowing date was shown to govern the time over which a crop may be susceptible to yield loss from aphids, with later-drilled crops being more susceptible to late-summer aphid infestations. Aphid numbers rarely affected grain yield but were found to be related to some grain quality parameters, but reducing polyphagous predators had no direct impact on grain yield or quality even where the aphid burden increased. The peak period of activity and density differed between the species of Carabidae, Staphylinidae and Araneae consequently influencing their relationship with the aphids. Some negative correlations were found between these groups of polyphagous predators and aphids. Species composition and abundance differed between fields thereby influencing the level of aphid predation. The exclusion barriers were most effective at reducing numbers of Carabidae although numbers of Staphylinidae and Araneae were also reduced. The consequences for Integrated Crop Management are discussed.  相似文献   

7.
Females of certain aphidophagous ladybirds in the absence of natural protein food (aphids) enter reproductive diapause. Reactivation of diapausing beetles is possible only after consuming the food which is suitable for oogenesis of females and development of larvae. The influence of diet and photoperiod on the dynamics of weight and on the rate of reproductive maturation of reactivating females of Harmonia axyridis was studied under laboratory conditions. The experiments were conducted at combinations of two day lengths (12 and 18 h) with 6 trophic regimes with the following mean numbers of daily consumed aphids: 0 (aphids were absent over the whole experiment), 0.1 (1 aphid was provided every 10 days), 0.5 (1 aphid every second day), 1 (1 aphid every day), 10 (10 aphids every day), and 50 (about 50 aphids every day). Judging from the state of ovarian development estimated by dissection 20 days after the beginning of the experiment, the threshold of the trophic termination of reproductive diapause under the long day conditions lies between the regimes of 0.1 and 0.5 aphids per day, which is approximately equal to the earlier investigated threshold of the trophic induction of diapause. Short day slowed reactivation and has increased the threshold of the trophic response up to 1-10 aphids per day. Based on these data, we conclude that under natural conditions females which entered reproductive diapause because of the absence of aphids are capable of reactivation in the presence of even a minimal amount of natural protein food. Moreover, in spring and summer (when the probability of the increase in aphid abundance is relatively high) reactivation starts at lower prey population density than in autumn, when the appearance of the stable aphid colony (which is necessary to complete the development of the emerged larvae) is less probable.  相似文献   

8.
In 1996 and 1997 a field survey of the abundance and species composition of cereal aphid primary and secondary parasitoids in spring barley, winter wheat and durum wheat was conducted in Zealand, Denmark. The purpose was to create a better understanding of the mechanisms underlying aphid–parasitoid dynamics in the field. Such an understanding can be used when developing biological control methods in cereals. In both years aphid attacks in cereals began in late June and never exceeded the economic threshold. In 1996 the first aphids were found in wheat on 26 June; in 1997 the first aphids were found on 24 June on both crops. The highest densities reached in 1996 were an average of six aphids per shoot in winter wheat and one aphid per shoot in spring barley. In 1997 the highest densities reached were 11 aphids per shoot in winter wheat and four aphids per shoot in spring barley. The aphid population collapsed by the end of July to early August in 1996, but it collapsed by mid-July in 1997. The onset and peak of parasitization were delayed in comparison to aphid infestation. Parasitism was 20–60% by the end of the cropping season in spring barley, and 30–80% in winter wheat and durum wheat in 1996. In 1997 parasitism did not exceed 3–11% in barley and was less than 2% in one winter wheat field but more than 40% in the other winter wheat field sampled. In both years most parasitism was due to Aphidiidae (Hymenoptera). The two dominant species were Aphidius ervi Haliday and Aphidius rhopalosiphi De Stefani-Perez. Hyperparasitism began after primary parasitism and increased progressively during the cropping season. The two years were similar in many respects, including for species composition of aphids and parasitoids. The late start of the aphid infestation may have contributed to the high level of parasitization found in 1996, but in 1997 the aphid infestation period was so short that a parasitoid population did not have time to build up.  相似文献   

9.
Abstract  Based on field population sampling of Aphis gossypii on cotton seedlings in Quzhou Experiment Station of China Agricultural University in Hebei Province in 1991, we obtained a data set consisting of 24 estimates of mean aphid density ( m , number of aphids per plant), variance (s2) and the proportion of plants (PT) with no more than T aphids (T=0, 1, 2,…, 8, 10, 15, 20, respectively and defined as tally threshold). Taylor's power law fitted the data well (r2= 0. 958). The resulting slope (1. 515) was significantly greater than 1, indicating that the spatial distribution of this aphid was in aggregated pattern. An empirical relationship between m and Pr was developed for each T value using the parameters from the linear regression In( m )= a +bln[- ln( PT )}]. The importance of the T values in reduction of sampling errors and their application to binomial sampling plans are discussed. Small T values, particularly aphid-free plant (T = 0, conventional binomial sample), could lead to spurious estimates of m from PT . A value of T from 10 to 15 was recommended to develop binomial sampling plans for the aphids on cotton seedlings because of the relatively small sampling errors.  相似文献   

10.
1991年4月—7月在河北省北京农业大学曲周试验站的棉花地进行苗期棉蚜(Aphisgossypii)的田间抽样调查,共收集到24组抽样数据。用泰勒幂法则对数据进行拟合,得到棉花苗期棉蚜为聚集分布。利用每样方(株)虫口不超过数阈值T(分别为0,1,2…9,10,15,20,30)头蚜虫的植株比例(PT)与种群密度(m,头/株)的关系,拟合经验关系式ln(m)=a十bln[-ln(PT)],通过对不同数阈值T的回归决定系数(r2)、种群的回归估计方差(Var(m))和抽样精度(用d估计)等进行综合分析,结果表明该蚜虫在数阈值T为15时,回归估计方差最小,回归决定系数和d值最大,因而T=15为该蚜虫的理想数阈值;而小的T值尤其是T为O时,由于产生太大的回归估计方差,很小的回归决定系数和d值即抽样的精度极低,因而不宜在实际中应用于棉蚜的二项式抽样设计。  相似文献   

11.
C. Trouve  S. Ledee  A. Ferran  J. Brun 《BioControl》1997,42(1-2):57-62
The possibility of usingHarmonia axyridis (Pallas) to control the damson-hop aphidPhorodon humuli (Schrank) in a dwarf-hop garden was studied in northern France in 1994 and 1995. Second and third instar larvae ofH. axyridis were released at different stages of the aphid population increase (early, at the time of insecticide treatment threshold was exceeded and late). In the control, the number of aphids reached 191.3±30.8 per leaf at the end of June. In the plots where 50 larvae per plant were released, the best control was obtained when larvae were released early and the aphid population was approximately 20 per leaf. In this case, the average number of aphid per leaf did not exceed 54.5±10.3 aphids at the end of June, which is lower than the insecticide treatment threshold of 80 aphids per leaf. Indigenous predators, especiallyAdalia bipunctata L., complemented the effect ofH. axyridis.  相似文献   

12.
Seasonal incidence of aphid, Amphorophora ampullata on Hypolepis polypodioides was recorded throughout the year from November 2012 to November 2013 at weekly interval. Peak incidence of aphid was recorded during third week of November 2012 (25.94 ± 2.39 aphids/pinna), later the aphid population gradually decreased from December 2012 onwards and reached below threshold level during the last week of January (0.1 ± 0 aphids/pinna). The aphid population starts building up again from first week of February 2013 (1.6 ± 0.13 aphids/pinna) and attained its peak in the last week of August (32.17 ± 1.22 aphids/pinna) then decreased gradually in the first week of September (20.82 ± 4.70 aphids/pinna). Aphid densities again increased gradually from second week of September (21.62 ± 3.02 aphids/pinna) to November 2013 and reached maximum aphid densities during November (56.55 ± 4.34 aphids/pinna). Among weather parameters, aphid population showed significant positive correlation with relative humidity during morning hours.  相似文献   

13.
基于棉花苗期棉蚜(Aphis gossypii)的24组调查数据,利用每样方虫口不超过数阈值T(为0,1,2,…,9,10,15,20,30)头蚜虫的植株比例(PT)与种群密度(m,头/株)的关系,拟合经验关系式1n(m)=α+b1n〔-1n(PT)〕设计二项式抽样。通过对不同数阈值T的决定系数(r^2)、估计方差(Var(m))和抽样精度(d估计)等进行综合分析,结果表明该蚜虫在数阈值T为15时  相似文献   

14.
The objectives of this study were to determine if coccinellids adjusted their distribution within spring wheat fields in response to spatial variation cereal aphid density in the fields and to describe the patterns of cereal aphid population growth that resulted. Field experiments were completed in which the physical dimensions of patches infested with cereal aphids, cereal aphid density, and access to patches by coccinellids were varied. Aphid infestations consisted of naturally occurring densities (natural patches) and much greater densities created by supplementing patches with aphids (supplemented patches). Coccinellids were denied access to some supplemented patches (exclusion patches) but allowed unlimited access to others. Densities of adult Hippodamia convergens and Coccinella septempunctata were correlated with aphid density in patches whereas density of Coleomegilla maculata was not. Aggregation by coccinellids was independent of patch area. The realized aphid population growth rate (r) was lower in supplemented than natural patches in all four trials but was significantly lower in only one trial. The lower r in supplemented patches was not exclusively caused by coccinellid predation, and emigration of aphids from patches probably also contributed. r was significantly greater in exclusion patches than supplemented and natural patches, indicating that coccinellids markedly reduced aphid numbers in patches even when aphid density was extremely high. Received: February 17, 1999 / Accepted: February 1, 2000  相似文献   

15.
The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is the most economically important pest of banana (Musa spp.) fields in Hawaii. Recently, there has been a concerted effort in Hawaii to learn more about the biology and ecology of this pest. However, limited work has been directed at determining the distribution of P. nigronervosa in banana fields and developing an integrated pest management plan. Therefore, a survey was conducted in banana fields throughout the Hawaiian Islands to determine the distribution and density of P. nigronervosa within banana mats from plants of different stages. Another aim was to determine whether the presence of ants on banana plants could be used as a reliable indicator of aphid infestations. Results of the survey showed that plants < or = 1.5 m (small sucker) in height contain the highest aphid populations per meter in plant height and that mother plants (> or = 2.5 m) had the lowest aphid counts and rate of infestation compared with small and intermediate suckers (> 1.5 < 2.5 m). More specifically, aphid population was reduced by approximately 12 aphids for every meter increase in plant height and that aphids are rarely found > or = 2.5 m within the plant canopy. Although there was an increase likelihood of finding ants on banana plants with higher aphid densities, results suggest that ants would be present on plants in the absence of aphids. Implications of these and other findings with respect to sampling and managing P. nigronervosa and associated Banana bunchy top virus are discussed.  相似文献   

16.
Cereal stands in central Europe are commonly infested with three species of aphids that may become serious pests. With increasing abundance, the proportion of a particular species in the total aphid population may remain constant, suggesting a density-independent exponential growth, or the proportion can change, suggesting density-dependent constraints on growth. The constraints that affect particular species, and thus their relative abundance, were studied. The proportionality between maximum abundances of the cereal aphids was studied using a 10-year census of the numbers of aphids infesting 268 winter wheat plots. For two species their abundance on leaves and ears was compared. With increasing aphid density the maximum abundance of Rhopalosiphum padi (Linnaeus) remained proportional, but not that of Sitobion avenae (Fabricius), which was constrained by the smaller surface area of ears compared to leaves. There was no evidence of inter-specific competition. Maximum abundance of R. padi and Metopolophium dirhodum (Walker) on leaves did not change proportionally as the proportion of M. dirhodum decreased with increasing overall aphid density. This decrease was probably caused by the restricted distribution of M. dirhodum, which is confined to leaves, where space is limiting. No change in proportion between populations was detected when the average densities were below 0.54 aphids per leaf or ear. Non-proportional relationships between aphid populations appeared to be due to spatial constraints, acting upon the more abundant population. Detecting the limitation of population growth can help with the assessment of when density-independent exponential growth is limited by density-dependent factors. This information may help in the development of models of cereal aphid population dynamics.  相似文献   

17.
Seasonal abundance of resident parasitoids and predatory flies, and corresponding soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), densities were assessed in soybean fields from 2003 to 2006 at two locations in lower Michigan. Six parasitoid and nine predatory fly species were detected in 4 yr by using potted plants infested with soybean aphid placed in soybean fields. The parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) and the predatory flies Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), and Allograpta obliqua Say (Diptera: Syrphidae) were most numerous. Generally, L. testaceipes was more abundant late in the soybean growing season, but it also occurred during soybean vegetative growth; A. obliqua was more abundant during vegetative growth; and A. aphidimyza was common throughout the season. Soybean plants were visually inspected to estimate densities of soybean aphid, mummified aphids, and immature predatory flies. From 2003 to 2006, parasitism rates were inversely correlated with aphid density: percentage of parasitism was always very low (< or = 0.1%) at high aphid densities (> 100 aphids per plant), and higher parasitism, up to 17%, was observed at very low aphid densities (< 1 aphid per plant). Populations of immature predatory flies, particularly A. aphidimyza, generally increased in soybean fields with increasing soybean aphid populations, but aphids always outnumbered immature flies by 100-21,000-fold when flies were detected. Rearing field-collected aphid in 2006 substantiated that parasitism varied widely, with parasitism in most cases < 10%. Based on findings of low parasitism and predation, positive response to changing aphid densities by predatory flies but not parasitoids, early season abundance primarily of predatory flies, and past findings on these taxa's diversity and abundance, we discuss the potential use of exotic parasitoids and predatory flies to enhance soybean aphid biological control.  相似文献   

18.
The numbers of greenbugs, Schizaphis graminum (Rondani), and bird cherry-oat aphids, Rhopalosiphum padi L., per wheat tiller (stem) were estimated in 189 production winter wheat (Triticum aestivum L.) fields located throughout Oklahoma. Taylor's power law regressions were calculated from these data and used to construct fixed precision sequential sampling schemes for each species. An evaluation data set was constructed from 240 samples taken during three growing seasons from winter wheat fields at four locations in Oklahoma. Wheat cultivar and growth stage were recorded for each field on the day of sampling. Taylor's power law parameters for evaluation fields differed significantly for both species among growing seasons, locations, and plant growth stages. Median precision achieved using the fixed precision sequential sampling schemes for each species departed <20% from expected precision over the range population intensity in the evaluation data. For the 10% of samples with greatest deviation between observed and expected precision, observed precision was 13.8-81.8% greater than that expected precision depending on aphid species and population intensity. For the greenbug, the distribution of the percentage deviation between observed and expected precision was positively skewed, so that the sampling scheme tended to over-predict precision. For the bird cherry-oat aphid, the distribution was more symmetric. Even though precision observed using the sampling schemes frequently varied from expected precision, because of the inevitable consequence of sampling error and environmental variation, the sampling schemes yielded median observed precision levels close to expected precision levels over a broad range of population intensity.  相似文献   

19.
Applications of pirimicarb and fenvalerate at full-rate and at a range of reduced dosages were applied on fields of winter wheat between 1983 and 1988 in West Germany. The relative effects of these treatments on the control of cereal aphids varied according to the growth stage at which spraying took place and the size of the aphid populations. The economic profitability of these treatments depended on the extent of post-treatment recovery of the aphid populations, the cost of control and the crop value. Under certain circumstances the high efficiencies of commonly-used insecticides at full dose-rate are not necessary to gain effective aphid control economically; a better return can be made by reducing the quantity of active ingredient per hectare.  相似文献   

20.
Adult rove beetles (Staphylinidae) were sampled every 7–14 days from one winter wheat field located in each of the four major wheat growing regions of Oklahoma during the 1999–2000 and 2000–2001 growing seasons. The number of cereal aphids per tiller, wheat plant growth stage, and wheat tiller density also were estimated. A total of 12 genera representing 13 species of beetles were collected from the field. The density of rove beetles was generally low, ranging from 0.003 beetles per m2 in fall to 0.106 beetles per m2 in spring. Rove beetle communities differed among seasons. After accounting for the effect of season, there was no statistically significant association between rove beetle community structure and field location, aphid density, wheat plant growth stage, or wheat plant density. Most rove beetle species showed no association with a particular season, however, Aleochara notula Erichson, Lathrobium sp., and Oxypoda sp. were present predominantly in fall, while Bisnius inquitus Erichson was associated with winter. Oxypoda sp. was the most abundant rove beetle in winter wheat fields in spring and was relatively abundant in winter, but was not collected from wheat fields in fall. Tachyporus jocosus Say was present in wheat fields during all seasons. T. jocosus was the most abundant rove beetle species in the winter wheat fields in fall and winter and was the second most abundant species during spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号