首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical forces related to pressure and flow are important for cell hypertrophy and proliferation. There are still a few studies that examine responses of human vascular smooth muscle cells to pure pressure stress (transmural pressure). It is unclear as to which mechanisms are involved in cellular responses to pressure elevation. On the other hand, although the involvement of the local renin-angiotensin system (RAS) in pressure-induced responses was reported, the results were contradictory. It still remains to be determined whether RAS in human vascular smooth muscle cells is activated by pure pressure stress. We studied the upstream signal transduction events of extracellular signal kinase (ERK) in response to atmospheric pressure stress and involvement of angiotensin II in pressure-induced cell proliferation in human aortic smooth muscle cells (HASMC). A pressure-loading apparatus was set up to examine the effects of atmospheric pressure on human aortic smooth muscle cells. Pressure application of 160 mmHg for 3 h produced cell proliferation and activated ERK and c-JUN N-terminal kinase (JNK). ACE inhibitor suppressed all of them. ERK kinase (MEK) inhibitor also suppressed cell proliferation stimulated by pure pressure. The phosphorylated c-Src was increased by pure pressure stress. The treatment with c-Src kinase inhibitor suppressed pressure-induced proliferative response. In summary, our study found that ERK activation mediated pure pressure-induced proliferative response of HASMC. This activation was partly mediated by c-Src.  相似文献   

2.
3.
Mechanical forces related to pressure and flow are important for the etiology of atherosclerosis and hypertension. We hypothesized the presence of mechanosensors that were solely sensitive to pure atmospheric pressure in the absence of shear and tensile stresses. A pressure-loading apparatus was set up to examine the effects of atmospheric pressure on human aortic smooth muscle cells (HASMC). Pressure application of 140 to 180 mmHg produced DNA synthesis in a pressure-dependent manner. In contrast, pressure of 120 mmHg or less produced no significant change. Both extracellular signal-regulated kinase and c-Jun N-terminal kinase activities, but not p38 activity, were stimulated by pressures of more than 160 mmHg. Pertussis toxin (PTx) completely inhibited the pressure-induced increase of DNA synthesis under the high pressure of 200 mmHg. These data suggest that HASMC have a mechanosensing cellular switch for DNA synthesis which is sensitive to pure atmospheric pressure, and that the molecular switch is activated by pressure of more than 140 mmHg. The activation mechanism consists of PTx-sensitive and -insensitive pathways, and the former is activated by high pure pressure.  相似文献   

4.
Advanced glycation end-products (AGEs) play key roles in the development of diabetic vascular complications by activating the proliferation and migration of vascular smooth muscle cells. Here, we identified an increase of the migratory properties of human aortic smooth muscle cells (HASMC) through AGE-induced expression of lipocalin-2 (LCN2). Because the AGE-elicited expression of LCN2 was diminished by an antibody against the AGE receptor (RAGE), diphenylene iodonium (DPI), N-acetyl cysteine, LY294002, and SP600125, we suggest that AGEs enhance the expression of LCN2 via a RAGE-NADPH oxidase-reactive oxygen species pathway, leading to the phosphorylation of PI3K-Akt and JNK in HASMCs. In addition, a chromatin immunoprecipitation assay and promoter assay revealed that CCAAT/enhancer binding protein β is crucial for AGE-induced expression of LCN2. However, any other AGE-related signaling pathway, including ERK1/2, p38, NF-κB, and AP-1, did not affect the AGE- induced expression of LCN2. Knockdown of LCN2 expression by shRNA showed that AGE-elicited LCN2 expression enhanced the invasive and migratory properties of HASMCs, but showed no effect on cell proliferation. Considering the importance of HASMC migration in the development of atherosclerosis, our study provides a novel insight into diabetic vascular complications.  相似文献   

5.
6.
The proliferation of vascular smooth muscle cells is important in the pathogenesis of many vascular diseases. Reactive oxygen species (ROS) produced by NADPH oxidases in smooth muscle cells have been shown to participate in signaling cascades regulating proliferation induced by platelet-derived growth factor (PDGF), a powerful smooth muscle mitogen. We sought to determine the role of Nox5 in the regulation of PDGF-stimulated human aortic smooth muscle cell (HASMC) proliferation. Cultured HASMC were found to express four isoforms of Nox5. When HASMC stimulated with PDGF were pretreated with N-acetyl cysteine (NAC), proliferation was significantly reduced. Proliferation induced by PDGF was also heavily dependent on JAK/STAT activation, as the JAK inhibitor, AG490, was able to completely abolish PDGF-stimulated HASMC growth. Specific knockdown of Nox5 with a siRNA strategy reduced PDGF-induced HASMC ROS production and proliferation. Additionally, siRNA to Nox5 inhibited PDGF-stimulated JAK2 and STAT3 phosphorylation. ROS produced by Nox5 play an important role in PDGF-induced JAK/STAT activation and HASMC proliferation.  相似文献   

7.
8.
9.
10.
Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.  相似文献   

11.
目的:探究TCAB1沉默对人主动脉平滑肌细胞(HASMC)增殖的影响及可能机制。方法:采用RNAi技术设计并合成靶向沉默TCAB1基因表达的三对特异性si RNA序列(si TCAB1-331、si TCAB1-619、si TCAB-749)和一对阴性对照序列(NC),使用lipo2000将si TCAB1、NC转染HASMC,分为3个组:干扰组(si TCAB1)、空白对照组(BC)、阴性对照组(NC),转染24小时倒置荧光显微镜观察细胞转染情况;通过RT-qPCR和Western blot从3个干扰靶点中筛选效果最好的干扰靶点。进一步转染si TCAB1-749后,MTS检测HASMC 24、48、72 h的增殖能力,48小时用RT-qPCR和Western blot检测CyclinD1表达量变化,流式细胞术检测HASMC的细胞周期变化。结果:RT-qPCR和WB结果显示si TCAB1-749为最好的干扰靶点;转染24、48、72 h后,si TCAB1-749组增殖水平明显低于NC组、BC组(P0.05)。流式结果显示:si TCAB1-749组处于G1期细胞比率有所增加,处于S期细胞比率减少(P0.05),且si TCAB1-749组细胞周期蛋白cyclinD1表达也下降(P0.05)。结论:沉默TCAB1能抑制HASMC的增殖,其机制可能与阻碍细胞周期蛋白cyclinD1有关。  相似文献   

12.
13.
Human airway smooth muscle cells (HASMC) secrete fractalkine (FKN), a chemokine the concentration of which is increased in asthmatic patients. HASMC also induce mast cell chemotaxis, as a component of asthma inflammation. We therefore evaluated the role of smooth muscle-derived FKN in mast cell migration. We assessed the capacity of recombinant FKN to induce human mast cell chemotaxis. This effect implicates a calcium-independent pathway involving actin reorganization and protein kinase C-delta. We found that HASMC constitutively produce FKN, the synthesis of which is reinforced upon proinflammatory stimulation. Under basal experimental conditions, FKN production by HASMC is not sufficient to induce mast cell chemotaxis. However, pretreatment of mast cells with the neuropeptide vasoactive intestinal peptide (VIP) increases FKN potency to attract mast cells. Since we observed, in asthmatic patients, an increase in both FKN and VIP expression by airway smooth muscle and a positive correlation between VIP staining and mast cell infiltration of the smooth muscle layer, we conclude that HASMC-derived FKN may contribute to mast cell recruitment in asthma.  相似文献   

14.
Rossi F  Bertone C  Petricca S  Santiemma V 《Peptides》2006,27(11):2935-2941
The vasodilating peptide adrenomedullin has been reported to regulate vascular tone as well as proliferation and differentiation of various cell types in an autocrine/paracrine manner. Conflicting data have been reported on the adrenomedullin (AM) effect on vascular smooth muscle cell proliferation, a process involved in the progression of vascular remodeling and atherosclerotic lesion. In this paper we investigate the effect of AM on proliferation of human aorta smooth muscle cell (HASMC). AM showed a potent dose-dependent inhibiting effect on angiotensin II (AngII) induced-proliferation and a stimulatory effect on proliferation of quiescent cells. The cAMP/PKA pathway was involved in the AM inhibitory effect of AngII-induced proliferation in HASMC. PI3K/Akt and ERK pathways were involved in the proliferative effect exerted by AM per se. Our results suggest that AM plays a role in the regulation of HASMC growth antagonizing the AngII effect and may be involved in conditions of altered regulation of the blood vessels.  相似文献   

15.
Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.  相似文献   

16.
Lactate is formed and utilized continuously under fully aerobic conditions. Lactate is oxidized actively at all times, especially during exercise. Family of monocarboxylate transport proteins (MCTs) that are differentially expressed in cells and tissues accomplishes the facilitated transport of lactate across membranes. Previously we reported that there is MCT1 in blood circulation. We also reported the pressure stress stimulated cell proliferation in aortic smooth muscle cells (HASMC). In this experiment we attempted to prove the existence of MCT1 in HASMC and to clarify the effect of pressure stress on MCT1 localization in HASMC. We determined succinate dehydrogenase (SDH) activity as a marker of energy metabolism in cells. SDH activity was increased by pressure stress. Lactate enhanced the SDH activity under pressure stress (160 mmHg for 3 h) as dose dependent manner. On the other hand, lactate excretion was suppressed by the addition of lactate. We could detect MCT1 in the cytosolic and the membrane fractions of HASMC. The pressure stress increased MCT1 in the membrane fraction in the presence of extracellular lactate. In summary, we proved the existence of MCT1 in HASMC. Pressure stress changed the localization of MCT1. The increased membranous MCT1 may transport lactate for energy metabolism in cells.  相似文献   

17.
Platelet-derived growth factor BB induced cyclin D1 expression in a time- and nuclear factor of activated T cells (NFAT)-dependent manner in human aortic smooth muscle cells (HASMCs), and blockade of NFATs prevented HASMC DNA synthesis and their cell cycle progression from G1 to S phase. Selective inhibition of NFATc1 by its small interfering RNA also blocked HASMC proliferation and migration. Characterization of the cyclin D1 promoter revealed the presence of several NFAT binding sites, and the site at nucleotide −1333 was found to be sufficient in mediating platelet-derived growth factor BB-induced cyclin D1 promoter-luciferase reporter gene activity. In addition to its role in cell cycle progression, cyclin D1 mediated HASMC migration in an NFATc1-dependent manner. Balloon injury-induced cyclin D1-CDK4 activity requires NFAT activation, and adenovirus-mediated transduction of cyclin D1 was found to be sufficient to overcome the blockade effect of NFATs by VIVIT on balloon injury-induced vascular wall remodeling events, including smooth muscle cell migration from the medial to luminal region, their proliferation in the intimal region, and neointima formation. Together, these results provide more mechanistic evidence for the role of NFATs, particularly NFATc1, in the regulation of HASMC proliferation and migration as well as vascular wall remodeling. NFATc1 could be a potential therapeutic target against the renarrowing of artery after angioplasty.  相似文献   

18.
The present study investigated the role of long non‐coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in the human aortic smooth muscle cell (HASMC) proliferation and migration and explored the potential link between SNHG16 and atherosclerosis. Our results showed that platelet‐derived growth factor (PDGF)‐bb treatment promoted cell proliferation and migration with concurrent up‐regulation of SNHG16 in HASMCs. Small nucleolar RNA host gene 16 overexpression promoted HASMC proliferation and migration, while SNHG16 knockdown suppressed cell proliferation and migration in PDGF‐bb‐stimulated HASMCs. The bioinformatic analyses showed that SNHG16 possessed the complementary binding sequence with miR‐205, where the interaction was confirmed by luciferase reporter assay and RNA pull‐down assay in HASMCs, and SNHG16 inversely regulated miR‐205 expression. MiR‐205 overexpression attenuated the enhanced effects of PDGF‐bb treatment on HASMC proliferation and migration. Moreover, Smad2 was targeted and inversely regulated by miR‐205, while being positively regulated by SNHG16 in HASMCs. Smad2 knockdown attenuated PDGF‐bb‐mediated actions on HASMC proliferation and migration. Both miR‐205 overexpression and Smad2 knockdown partially reversed the effects of SNHG16 overexpression on HASMC proliferation and migration. Moreover, SNHG16 and Smad2 mRNA were up‐regulated, while miR‐205 was down‐regulated in the plasma from patients with atherosclerosis. Small nucleolar RNA host gene 16 expression was inversely correlated with miR‐205 expression and positively correlated with Smad2 expression in the plasma from atherosclerotic patients. In conclusion, our data showed the up‐regulation of SNHG16 in pathogenic‐stimulated HASMCs and clinical samples from atherosclerotic patients. Small nucleolar RNA host gene 16 regulated HASMC proliferation and migration possibly via regulating Smad2 expression by acting as a competing endogenous RNA for miR‐205.  相似文献   

19.
Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting their migration and proliferation in vitro and injury-induced neointima formation in vivo.  相似文献   

20.
Increasing evidence indicates an important role of PPAR gamma activation in modulating the development and progression of atherosclerosis, however, the mechanisms involved in these effects are not well understood since the PPAR gamma-regulated genes in vascular smooth muscle cells (VSMC) are poorly defined. Here we reported that PPAR gamma ligands, GW7845, ciglitazone and troglitazone had the effect of inhibiting osteoprotegerin (OPG) expression in human aortic smooth muscle cells (HASMC). The effect of GW7845 and ciglitazone on OPG expression was completely abolished by GW9662, a PPAR gamma antagonist. Overexpression of PPAR gamma in HASMC by the infection of a PPAR gamma adenovirus dramatically decreased OPG expression. In addition, PPAR gamma activation inhibited OPG promoter activity. Taken together, our data suggest that OPG expression is a novel PPAR gamma target gene in VSMC and downregulation of OPG expression by PPAR gamma activation provides a new insight into the understanding of the role of PPAR gamma in atheroscelrosis and hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号