首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elongation growth of protonemata of Adiantum capillus-veneris , which can be controlled by light irradiation, was examined under acropetal and basipetal hypergravity conditions (from -13 to +20 g ) using a newly developed centrifugation equipment. Elongation of the protonemata under red light was inhibited by basipetal hypergravity at more than +15 g but was promoted by acropetal hypergravity from -5 to -8 g . Division of the protonemal cells that was induced by white light was inhibited under basipetal hypergravity at +20 g but was unaffected under acropetal hypergravity at -15 g . Upon exposure to continuous red light for 7 to 8 days, most of the protonemata grew as filamentous cells in the absence of a change in the normal gravitational force (control), but more than half of the protonemal cells were abnormal in terms of shape when maintained under hypergravity at +20 g .  相似文献   

2.
The positioning and gravity-induced sedimentation of statoliths is crucial for gravisensing in most higher and lower plants. In positively gravitropic rhizoids and, for the first time, in negatively gravitropic protonemata of characean green algae, statolith positioning by actomyosin forces was investigated in microgravity (<10(-4) g) during parabolic flights of rockets (TEXUS/MAXUS) and during the Space-Shuttle flight STS 65. In both cell types, the natural position of statoliths is the result of actomyosin forces which compensate the statoliths' weight in this position. When this balance of forces was disturbed in microgravity or on the fast-rotating clinostat (FRC), a basipetal displacement of the statoliths was observed in rhizoids. After several hours in microgravity, the statoliths were loosely arranged over an area whose apical border was in the same range as in 1 g, whereas the basal border had increased its distance from the tip. In protonemata, the actomyosin forces act net-acropetally. Thus, statoliths were transported towards the tip when protonemata were exposed to microgravity or rotated on the FRC. In preinverted protonemata, statoliths were transported away from the tip to a dynamically stable resting position. Experiments in microgravity and on the FRC gave similar results and allowed us to distinguish between active and passive forces acting on statoliths. The results indicate that actomyosin forces act differently on statoliths in the different regions of both cell types in order to keep the statoliths in a position where they function as susceptors and initiate gravitropic reorientation, even in cells that had never experienced gravity during their growth and development.  相似文献   

3.
Germinating spores of the fern Onoclea sensibilis L. were grown in darkness, so that they developed as filaments (protonemata). Brief daily exposure of the filaments to red, far-red or blue light increased the rate of filament elongation. Filament elongation was also promoted by indoleacetic acid. When filament elongation was promoted with both indoleacetic acid and exposure to light, the growth promotions caused by red and far-red light were additive to auxin-induced growth. Blue light promoted elongation only at sub-optimal concentrations of auxin. Elongation induced by guanine was additive to red- and far-red-induced elongation. Gibberellic acid had no effect on elongation under any condition. Blue-light-induced elongation resembled auxin-induced elongation in its requirement for exogenous sucrose and sensitivity to inhibition by parachlorophenoxyisobutyric acid. Red and far-red light were active regardless of the presence or absence of sucrose and promoted elongation at a concentration of parachlorophenoxyisobutyric acid which completely inhibited blue-light-induced elongation.  相似文献   

4.
Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (statoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions (10(-4) g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.  相似文献   

5.
Spores of the fern, Onoclea sensihilis L., suffer a disruption of normal development when they are cultured on media containing colchicine. Cell division is inhibited, and the spores develop into giant spherical cells under continuous white fluorescent light. In darkness only slight cell expansion occurs. Spherical cell expansion in the light requires continuous irradiation. Photosynthesis does not seem to be involved, since variations in light intensity do not affect the final cell diameter; the addition of sucrose to the medium does not permit cell expansion in darkness; and the inhibitor DCMU does not block the light-induced cell expansion. Continuous irradiation of colchicine-treated spores with blue, red or far-red light produces different patterns of cell expansion. Blue light permits spherical growth, similar to that found under white light, whereas red and far-red light promote the reestablishment of polarized filamentous growth. Although ethylene is unable to induce polarized cell expansion in colchicine-treated spores in darkness or white and blue light, it enhances filamentous growth which already is established by red or far-red irradiation. Both red and far-red light increase the elongation of normal filaments (untreated with colchicine) above that of dark-grown plants, but under all 3 conditions the rates of volume growth are identical. Light, however, does cause a decrease in the cell diameters of irradiated filaments. These data are used to construct an hypothesis to explain the promotion of cell elongation in fern protonemata by red and far-red light. The model proposes light-mediated changes in microtubular orientation and cell wall structure which lead to restriction of lateral cell expansion and enhanced elongation growth.  相似文献   

6.
Polytrichum commune spores contained 5.61 ± 0.52 mg steryl and wax esters, including volatile compounds, per 100 mg dry weight of spores. Volatile compounds were not found in 3-h-old sporelings. The content of the steryl and wax ester fraction, excluding the volatile compounds, is slightly increased during the first 6 h of germination. Thereafter, the content is decreased throughout the germination. Thus, 3-day-old sporelings contained 0.52 ± 0.05 mg steryl and wax esters per 100 mg dry weight of spores. In connection with protonema growth, steryl and wax esters were produced, and the 7-day-old cultures contained 5.09 ± 0.37 mg steryl and wax esters per 100 mg dry weight of spores. The main fatty acids of the steryl and wax ester fraction of dry spores and germinating spores as well as of protonemata were palmitic, oleic, linoleic and linolenic acids. Polyunsaturated C 20 acids were present only in trace or small amounts. Phytanic and phytenic acids were found in small amounts in dry spores, in 3- to 72-h-old sporelings, and in protonemata.  相似文献   

7.
中华缩叶藓孢子萌发与原丝体发育特征研究   总被引:2,自引:0,他引:2  
通过室内人工培养中华缩叶藓的孢子,在光学显微镜下详细观察了其孢子萌发、原丝体发育及配子体发生的全过程.结果表明:中华缩叶藓的孢子在壁内萌发,随后分裂产生块状原丝体;块状原丝体上可产生两种丝状体,一种是具疣的棒状原丝体,另一种是由长圆柱状细胞组成的轴丝体;配子体原始细胞只产生于块状原丝体上.根据中华缩叶藓的孢子萌发和原丝体发育特征,并参照Nishida对藓类植物孢子萌发类型的划分,确定中华缩叶藓的萌发孢子型应属于缩叶藓型(Ptychomitrium-type).  相似文献   

8.
Summary Germination ofBacillus subtilis spores was initiated by L-Ala and competitively inhibited by D-Ala, suggesting the presence of an alanine receptor. The spores showed alanine racemase activity in the spore coat. To investigate the role of alanine racemase (L D) on germination, net racemase activity was determined using diphenylamine as a germination inhibitor and germination was measured using D-penicillamine as a racemase inhibitor. Apparent affinity of L-Ala to the germinant receptor was more than 1000 times higher than that to the racemase. Germination increased in the presence of D-penicillamine, when the concentration of L-Ala was low and that of spores was high. Racemase activity was optimal at 65°C at pH 9.0 and germination at 43°C at pH 7.2. Under unfavorable growth conditions such as high population of spores in limited nutrients, high temperature and high pH, spore alanine racemase converted the germinant actively to the inhibitor and this conversion may regulate germination for survival of the population.  相似文献   

9.
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions.  相似文献   

10.
Recent space-flight experiments performed by Tabony's team provided further evidence that a microgravity environment strongly affects the spatio-temporal organization of microtubule assemblies. Characteristic time and length scales were found that govern the organization of oriented bundles under Earth's gravitational field (GF). No such organization has been observed in a microgravity environment. This paper discusses physical mechanisms resulting in pattern formation under gravity and its disappearance in microgravity. The subtle interplay between chemical kinetics, diffusion, gravitational drift, thermal fluctuations, electrostatic interactions and liquid crystalline characteristics provides a plausible scenario.  相似文献   

11.
张开梅  方炎明  万劲  陶峰 《广西植物》2011,31(3):318-322
采用混合土培养渐尖毛蕨和齿牙毛蕨的孢子,显微镜下观察记录了它们的孢子萌发及配子体发育过程.结果表明:两者的孢子均为深褐色,极面观为椭圆形,赤道面观为半圆形,单裂缝;渐尖毛蕨的孢子萌发所需时间较渐尖毛蕨短,但两者萌发类型均为书带蕨型;丝状体阶段均发达;原叶体边缘均可产生少量毛状体;成熟原叶体均呈心脏形;由原叶体发育成幼孢...  相似文献   

12.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

13.
We investigated the effects of microgravity environment on growth and plant hormone levels in dark‐grown rice shoots cultivated in artificial 1 g and microgravity conditions on the International Space Station (ISS). Growth of microgravity‐grown shoots was comparable to that of 1 g‐grown shoots. Endogenous levels of indole‐3‐acetic acid (IAA) in shoots remained constant, while those of abscisic acid (ABA), jasmonic acid (JA), cytokinins (CKs) and gibberellins (GAs) decreased during the cultivation period under both conditions. The levels of auxin, ABA, JA, CKs and GAs in rice shoots grown under microgravity conditions were comparable to those under 1 g conditions. These results suggest microgravity environment in space had minimal impact on levels of these plant hormones in rice shoots, which may be the cause of the persistence of normal growth of shoots under microgravity conditions. Concerning ethylene, the expression level of a gene for 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase, the key enzyme in ethylene biosynthesis, was reduced under microgravity conditions, suggesting that microgravity may affect the ethylene production. Therefore, ethylene production may be responsive to alterations of the gravitational force.  相似文献   

14.
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.  相似文献   

15.
The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.  相似文献   

16.
A novel, h-shaped ultrasonic resonator was used to separate biological particulates. The effectiveness of the resonator was demonstrated using suspensions of the cyanobacterium, Spirulina platensis. The key advantages of this approach were improved acoustic field homogeneity, flow characteristics, and overall separation efficiency (sigma = 1 - ratio of concentration in cleared phase to input), monitored using a turbidity sensor. The novel separation concept was also effective under microgravity conditions; gravitational forces influenced overall efficiency. Separation of Spirulina at cleared flow rates of 14 to 58 L/day, as assessed by remote video recording, was evaluated under both microgravity (相似文献   

17.
Developing resistance to gravitational force is a critical response for terrestrial plants to survive under 1 × g conditions. We have termed this reaction “gravity resistance” and have analyzed its nature and mechanisms using hypergravity conditions produced by centrifugation and microgravity conditions in space. Our results indicate that plants develop a short and thick body and increase cell wall rigidity to resist gravitational force. The modification of body shape is brought about by the rapid reorientation of cortical microtubules that is caused by the action of microtubule-associated proteins in response to the magnitude of the gravitational force. The modification of cell wall rigidity is regulated by changes in cell wall metabolism that are caused by alterations in the levels of cell wall enzymes and in the pH of apoplastic fluid (cell wall fluid). Mechanoreceptors on the plasma membrane may be involved in the perception of the gravitational force. In this review, we discuss methods for altering gravitational conditions and describe the nature and mechanisms of gravity resistance in plants.  相似文献   

18.
The embryonic development of the fresh-water snail Biomphalaria glabrata was examined under microgravity-conditions and compared with the ground control and standard embryos, putting special emphasis on the shell formation. The process of shell formation may be particularly sensitive to the change of gravitational forces. The project aimed at determining whether the processes of mineralization during the formation of the exoskeleton in the growing snail embryo take place normally under microgravity conditions. Twenty-four adult individuals of the tropical freshwater snail B. glabrata were maintained 9 days in the Closed Equilibrated Biological Aquatic System (CEBAS Minimodule) on Space Shuttle flight STS-89. The animals produced spawning packs throughout the duration of the mission so that embryos of all developmental stages were achieved. The embryos developed slightly slower in the CEBAS than under standard conditions, and in older embryos a decreased mineralization of the shell was detected. These phenomena, however, were observed in the flight module as well as in the ground control specimens and was not an effect caused by the microgravity conditions. Embryos of B. glabrata showed a correct morphogenesis under microgravity, no teratological effects were noticed, and the shell formation proceeded normally.  相似文献   

19.
The biochemical and physiological basis of density heterogeneity in Renografin of Bacillus subtilis W23 spores was determined by analysis of metals, macromolecules, and dipicolinic acid in the two density classes of the population. Germination rate and heat resistance were measured in both density classes. Atomic absorption spectrophotometry revealed that heavy spores (density = 1.335 g/ml) have 30% more calcium than light spores (density = 1.290 g/ml). Other metals found in greater amounts in heavy spores were manganese and potassium. However, light spores had more sodium than heavy spores. The amounts of carbohydrates, nucleic acids, and proteins were the same in both types of spores, but light spores contained more lipids, whereas heavy spores had 30% more dipicolinic acid than light spores. Calcium and lipid were excluded as causes of the heterogeneity in density in that alteration of their contents in spores did not detectably affect the density of these spores. Spores of two densities were genetically similar. Furthermore, light density spores arose earlier during sporulation than heavy spores as determined by releasing refractile forespores at various times during sporulation. We concluded that light spores represent an incomplete stage in development because they became heavy when reinoculated into spent sporulation medium. This must involve the additional accretion or synthesis of dipicolinic acid.  相似文献   

20.
Growth and development, and auxin polar transport in Arabidopsis thaliana transformed with iaaH gene were studied under simulated microgravity conditions on a three-dimensional (3-D) clinostat. Simulated microgravity conditions on a 3-D clinostat did not affect the number of rosette leaves but promoted the growth and development (fresh weight of plant and the elongation of flower stalk) of transformants. Final growth of transformants under simulated microgravity conditions on a 3-D clinostat was almost equivalent to that grown on 1 g conditions in the presence of 1 micromoles IAM (indole-3-acetamide). The activities of auxin polar transport in the segments of flower stalk (inflorescence axis) of transformants grown on 1 g conditions were significantly promoted by the addition of IAM. Interestingly, simulated microgravity conditions on a 3-D clinostat also promoted the activities of auxin polar transport of transformants grown on the medium with or without IAM. Based on the results in this study, transgenic plants may not have an efficient homeostatic mechanism for the control of growth and development, and auxin polar transport activity in microgravity conditions in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号