首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

2.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

3.
The phenylalanine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pGCGGGUUUAm2GCUCA (N) GDDGGGAGAGCm22GpsiCAGACmUGmAAYApsim5CUGAAGm7GDm5CGUGUGTpsiCGm1AUCCACACAAACCGCACCAOH. Both in the nature of modified nucleotides which are present in this tRNA and in the overall sequence, this tRNA resembles more closely phenylalanine tRNAs of eukaryotic cytoplasm than those of prokaryotes. The sequence of this tRNA differs from those of the corresponding tRNAs of wheat germ and yeast by only 6 and 7 nucleotides respectively out of 76 nucleotides.U  相似文献   

4.
Nucleotide sequence of a spinach chloroplast valine tRNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
The nucleotide sequence of a spinach chloroplast valine tRNA (sp. chl. tRNA Val) has been determined. This tRNA shows essentially equal homology to prokaryotic valine tRNAs (58-65% homology) and to the mitochondrial valine tRNAs of lower eukaryotes (yeast and N. crassa, 61-62% homology). Sp. chl. tRNA Val shows distinctly lower homology to mouse mitochondrial valine tRNA (53% homology) and to eukaryotic cytoplasmic valine tRNAs (47-53% homology). Sp. chl. tRNA Val, like all other chloroplast tRNAs sequenced, contains a methylated GG sequence in the dihydrouridine loop and lacks unusual structural features which have been found in several mitochondrial tRNAs.  相似文献   

5.
The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.  相似文献   

6.
The primary sequence of wheat germ initiator tRNA has been determined using in vitro labelling techniques. The sequence is: pAUCAGAGUm1Gm2GCGCAG CGGAAGCGUm2GG psi GGGCCCAUt6AACCCACAGm7GDm5Cm5CCAGGA psi CGm1AAACCUG*GCUCUGAUACCAOH. As in other eukaryotic initiator tRNAs, the sequence -T psi CG(A)- present in loop IV of virtually all tRNA active in protein synthesis is absent and is replaced by -A psi CG-. The base pair G2:C71 present in all other initiator tRNAs recognized by E. coli Met-tRNA transformylase is absent and is replaced by U2:A71. Since wheat germ initiator tRNA is not formylated by E. coli Met-tRNA transformylase this implies a possible role of the G2:C71 base pair present in other initiator tRNAs in formylation of initiator tRNA species.  相似文献   

7.
The nucleotide sequence of cytoplasmic phenylalanine tRNA from Euglena gracilis has been elucidated using procedures described previously for the corresponding chloroplastic tRNA [Cell, 9, 717 (1976)]. The sequence is: pG-C-C-G-A-C-U-U-A-m(2)G-C-U-Cm-A-G-D-D-G-G-G-A-G-A-G-C-m(2)2G-psi-psi-A-G-A-Cm -U-Gm-A-A-Y-A-psi-C-U-A-A-A-G-m(7)G-U-C-*C-C-U-G-G-T-psi-C-G-m(1)A-U-C-C-C-G-G- G-A-G-psi-C-G-G-C-A-C-C-A. Like other tRNA Phes thus far sequenced, this tRNA has a chain length of 76 nucleotides. The sequence of E. gracilis cytoplasmic tRNA Phe is quite different (27 nucleotides out of 76 different) from that of the corresponding chloroplastic tRNA but is surprisingly similar (72 out of 76 nucleotides identical) to that of tRNA Phe from mammalian cytoplasm. This extent of sequence homology even exceeds that found between E. gracilis and wheat germ cytoplasmic tRNA Phe. These findings raise interesting questions on the evolution of tRNAs and the taxonomy of Euglena.  相似文献   

8.
Initiator tRNAs from the cytoplasm of salmon testes and salmon liver have been purified. The nucleotide sequence of these initiator tRNAs has been determined and found identical to that of initiator tRNA from mammalian cytoplasm. The only difference is the extent of modification of the nucleoside located between the dihydrouridine and the anticodon stems. In the salmon tRNAs, this modified nucleoside is predominantly N2N2-dimethyl guanosine, whereas in the mammalian initiator tRNA it is N2-methyl guanosine.  相似文献   

9.
Two cytoplasmic "petite" (rho-) clones of Saccharomyces cerevisiae have been selected for the retention of the aspartic acid tRNA gene. The two clones, designated DS200/A102 and DS200/A5, have tandemly repeated segments of mitochondrial DNA (mtDNA) with unit lengths of 1,000 and 6,400 base pairs, respectively. The DS200/A102 genome has a single tRNA gene with a 3'-CUG-5' anticodon capable of recognizing the 5'-GAC-3' and 5'-GAU-3' codons for aspartic acid. The mtDNA segment of DS200/A102 has been determined to represent the wild type sequence from 5.3 to 6.8 map units. The genome of DS200/A5 is more complex encompassing the region of wild type mtDNA from 3.5 to 12.7 units. A continuous sequence has been obtained from 3.5 to 8.6 units. In addition to the aspartic acid tRNA, this region codes for the tRNAUGCAla,tRNAUCUArg, tRNAACGArg, tRNAGCUSer,tRNAUCCGly and tRNAUUULys. The DNA sequence of the DS200/A5 genome has allowed us to deduce the secondary structures of the seven tRNAs and to assign precise map positions for their genes. All the tRNAs except tRNA GUCAsp exhibit most of the invariant features of prokaryotic and eukaryotic tRNAs. The aspartic acid tRNA has unusual D and T psi C loops. The structure of this tRNA is similar to the mitochondrial initiator tRNA of Neurospora crassa (Heckman, J.E., Hecker, L.I., Shwartzbach, S.D., Barnett, W.E., Baumstark, B., and RajBhandary, U.L. Cell 13, 83-95).  相似文献   

10.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

11.
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.  相似文献   

12.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TΨC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TΨC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TΨC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.  相似文献   

13.
The initiator tRNAsMet from the cytoplasm and chloroplasts of Phaseolus vulgaris have been purified and sequenced. The sequence of bean cytoplasmic initiator tRNAiMet is : pA-U-C-A-G-A-G-U-m1G-m2G-C-G-C-A-G-C-G-G-A-A-G-C-G-U-m2G-G-U-G-G-G2-C-C-C-A-U-t6A-A-C-C-C-A-C-A-G-m7G-D-m5C-C-C-A-G-G-A-psi-C-G-m1A-A-A-C-C-U-Gm-G-C-U-C-U-G-A-U-A-C-C-AOH. The sequence of bean cytoplasmic tRNAiMet is almost identical to that of wheat germ and shows a high degree of homology with other cytoplasmic initiator tRNAs. The sequence of bean chloroplast initiator tRNAfMet is : pC-G-C-G-G-A-G-U-A-G-A-G-C-A-A-C-U-U-Gm-G-D-A-G-C-U-C-G-C-A-A-G-G-C-U-C-A-U-A-A-C-C-U-U-G-A-A-m7G-acp3U-U-A-C-G-G-G-T-psi-C-A-A-A-U-C-C-C-G-U-C-U-C-C-G-C-A-A- C-C-AOH. Bean chloroplast initiator tRNAfMet sequence shows procaryotic characteristics at the 5' end of the acceptor stem and in the TpsiC loop, but also contains some distinctive features.  相似文献   

14.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

15.
The nucleotide sequence of Mycoplasma mycoides sp. capri PG3 formylmethionine tRNA has been determined, using in vitro labeling techniques, to be pC-G-C-G-G-G-G-s4U-A-G-A-G-C-A-G-U-D (U)-G-G-D-A-G-C-U-C-G-C-C-G-G-G-C-U-C-A-U-A-A-C-C-C-G-G-A-G-G-C-C-G-C-A-G-G-U-psi- C-G-A-G-U-C-C-U-G-C-C-C-C-C-G-C-A-A-C-C-AOH. This tRNA contains only three modified nucleosides s4U, D and psi, all of which are derived from uridine. Both in the structural features which distinguish eukaryotic from prokaryotic initiator RNAs and in the overall sequence, this tRNA resembles a typical prokaryotic initiator tRNA. A comparison of the sequence of this tRNA with those of other prokaryotic initiator tRNAs suggests that taxonomically the Mycoplasma may be less related to the Cyanophyta (Anacystis nidulans) than to the bacteria and less related to the Enterobacteriaceae (Escherichia coli) than to the Bacillaceae (Bacillus subtilis).  相似文献   

16.
Cytoplasmic initiator transfer ribonucleic acid (tRNAinit) was purified from bulk Torulopsis (Candida) utilis tRNA by a series of column chromatography procedures. Sequence analysis of the products of complete and partial digestion of this tRNA with ribonuclease A [EC 3.1.4.22] and ribonuclease T1 [EC 3.1.4.8] enabled us to determine the complete primary structure of the molecule. The chain length of this tRNA was 76, including 11 modified nucleotides. The structure of the tRNA was arranged into a cloverleaf model and compared with those of other initiator tRNA species. As in the cytoplasmic initiator tRNA's of most other eukaryotic cells, the sequence -A-U-C-G- is contained in this tRNA in place of the usual -T-psi-C-G (or A)- found in other tRNA's.  相似文献   

17.
Nucleotide sequence of starfish initiator tRNA.   总被引:4,自引:15,他引:4       下载免费PDF全文
The nucleotide sequence of starfish ovary initiator tRNA was determined to be pA-G-C-A-G-A-G-U-m1G-m2G-C-G-C-A-G-U-G-G-A-A-G-C-G-U-G-C-U-G-G-G-C-C-C-A-U-t6A-A-C-C-C-A-G-A-G-m7G-D-m5C-C-G-A-G-G-A-psi-C-G-m1A-A-A-C-C-U-C-G-C-U-C-U-G-C-U-A-C-C-AOH. The sequence was determined by a combination of the two different post-labeling techniques. Two-dimensional cellulose thin-layer chromatography was adopted for analysis of 5'-terminal nucleotides of tRNA fragments produced by formamide treatment. The nucleotide sequence of starfish initiator tRNA is very similar to that of mammalian cytoplasmic initiator tRNAs, but has seven different nucleotide residues and two modifications: residue 55 is psi instead of U, and residue 26 is unmodified G instead of m2G.  相似文献   

18.
The nucleotide sequence of initiator tRNA, tRNAfMet, from vitellogenic oocytes of Xenopus laevis was determined. The sequence was deduced from analysis of all T1 and pancreatic oligonucleotides and comparison with the sequence of initiator tRNA from other animal species. At least 80% of all initiator tRNA molecules from oocytes have the same nucleotide sequence. This means that most and probably all initiator tRNA genes which are active in oocytes are identical to one another. No structural difference was observed between liver and oocyte initiator tRNAs. Initiator tRNA from X. laevis has the same nucleotide sequence as initiator tRNA from several species of mammals. The genes coding for this RNA have therefore remained unchanged in the mammalian and amphibian lines for at least 300000000 years.  相似文献   

19.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

20.
The formation of a specific ternary complex between eukaryotic initiation factor 2 (eIF2), the initiator methionyl-tRNA (Met-tRNA), and GTP is a critical step in translation initiation in the cytoplasmic protein-synthesizing system of eukaryotes. We show that the A1 x U72 base pair conserved at the end of the acceptor stem in eukaryotic and archaebacterial initiator methionine tRNAs plays an important role in this interaction. We changed the A1 x U72 base pair of the human initiator tRNA to G1 x C72 and expressed the wild-type and mutant tRNA genes in the yeast Saccharomyces cerevisiae by using constructs previously developed in our laboratory for expression of the human initiator tRNA gene in yeasts. We show that both the wild-type and mutant human initiator tRNAs are aminoacylated well in vivo. We have isolated the wild-type and mutant human initiator tRNAs in substantially pure form, free of the yeast initiator tRNA, and have analyzed their properties in vitro. The G1 x C72 mutation affects specifically the binding affinity of eIF2 for the initiator tRNA. It has no effect on the subsequent formation of 40S or 80S ribosome initiator Met-tRNA-AUG initiation complexes in vitro or on the puromycin reactivity of the Met-tRNA in the 80S initiation complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号