首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD208 DC lysosomal-associated protein is a marker of activated human dendritic cells; however, recently it was described as a marker of adult type II pneumocytes in many species including humans and sheep. Our hypothesis was that CD208 is developmentally regulated in lung pneumocytes. Lamb lungs at varying stages of development were stained immunohistochemically for CD208 and with Nile red (a fluorescent stain for lamellar bodies of type II cells) along with pulmonary markers of maturation (glycogen stores and surfactant protein A [SP-A] expression) or proliferation (Ki-67). CD208 staining and Nile red were localized to rare pneumocytes in young fetal lambs (day 115), increasing in frequency and stain intensity with age. Periodic acid-Schiff staining of glycogen granules was most prominent in the young lambs (day 115) with reduced staining through advancing lung development. SP-A was detected in pulmonary epithelia and staining in alveoli increased through gestation with decreased staining at 2 weeks of age. Intranuclear Ki-67 staining decreased through late gestation but was increased in 2-week-old lambs. Ontogeny of CD208 staining and depletion of glycogen were correlated (p<0.0001) and consistent with the premise that CD208 is localized to developing lamellar bodies. The findings suggest that CD208 antigen expression may serve as a marker for pneumocyte maturation in the developing fetal lung.  相似文献   

2.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in the de novo synthesis of phosphatidylcholine (PtdCho). Alveolar type II cells synthesize large quantities of disaturated PtdCho, the surface-active agent of pulmonary surfactant, particularly at late gestation when the lung prepares itself for postnatal air breathing. To clarify the role of CCTalpha in lung surfactant maturation, we overexpressed CCTalpha(1-367) using the surfactant protein-C promoter. Lungs of transgenic mice were analyzed at day 18 of gestation (term = 19 days). Overexpression of CCTalpha(1-367) increased the synthesis and content of PtdCho in fetal type II cells isolated from the transgenic mice. Also, PtdCho content of fetal lung fluid was increased. No changes in surfactant protein content were detected. Interestingly, fetal type II cells of transgenic mice contained more glycogen than control cells. Incorporation studies with [U-(14)C]glucose demonstrated that overexpression of CCTalpha(1-367) in fetal type II cells increased glycogen synthesis without affecting glycogen breakdown. To determine which domain contributes to this glycogen phenotype, two additional transgenes were created overexpressing either CCTalpha(1-239) or CCTalpha(239-367). Glycogen synthesis and content were increased in fetal type II cells expressing CCTalpha(239-367) but not CCTalpha(1-239)(.) We conclude that overexpression of CCTalpha increases surfactant PtdCho synthesis without affecting surfactant protein levels but that it disrupts glycogen metabolism in differentiating type II cells via its regulatory domain.  相似文献   

3.
Epithelial differentiation during lung development appears to be influenced by mesenchyme-derived instructions coupled with hormonal regulations. The basal lamina which is associated with progenitor and differentiating epithelia during mouse embryogenesis (Theiler-stages 16-28) was examined by transmission electron microscopy and indirect-immunofluorescence microscopy. During the embryonic phase of lung development, progenitor epithelia for the pulmonary acinus projected microvilli or cytoplasmic "feet" through the basal lamina, which resulted in discontinuities and a close approximation of the adjacent mesenchymal-cell processes. These changes were also associated with the transitory polarization of mesenchymal cells perpendicular to the plane of the basal lamina, which resulted in a sheet of cuboidal mesenchymal cells adjacent to the developing acinar-tubule epithelium. During the embryonic phase of lung development, these specific interstitial or mesenchymal cells stained for heparan-sulfate proteoglycans; no other cell types were immunostained. By Theiler-stage 25, the acinar-tubule epithelia had differentiated into type-II pneumonocytes which contained lamellar bodies and significant amounts of glycogen. Fibronectin, laminin, and heparan-sulfate proteoglycan were localized in the basement membranes during the embryonic, canalicular, and terminal sac phases of lung morphogenesis. A diffuse localization of fibronectin of the interstitial cell surfaces was observed. These observations indicate that major changes in the structure and composition of basal lamina occur during the embryonic and fetal phases of pulmonary-acinus epithelial-cell differentiation and the production of pulmonary surfactant. The major changes in the basal lamina may be partly mediated by mesenchyme-derived instructions for type-II epithelial-cell differentiation.  相似文献   

4.
Pulmonary surfactant is a lipoprotein complex that functions to reduce surface tension at the air liquid interface in the alveolus of the mature lung. In late gestation glycogen-laden type II cells shift their metabolic program toward the synthesis of surfactant, of which phosphatidylcholine (PC) is by far the most abundant lipid. To investigate the cellular site of surfactant PC synthesis in these cells we determined the subcellular localization of two key enzymes for PC biosynthesis, fatty acid synthase (FAS) and CTP:phosphocholine cytidylyltransferase-alpha (CCT-alpha), and compared their localization with that of surfactant storage organelles, the lamellar bodies (LBs), and surfactant proteins (SPs) in fetal mouse lung. Ultrastructural analysis showed that immature and mature LBs were present within the glycogen pools of fetal type II cells. Multivesicular bodies were noted only in the cytoplasm. Immunogold electron microscopy (EM) revealed that the glycogen pools were the prominent cellular sites for FAS and CCT-alpha. Energy-filtering EM demonstrated that CCT-alpha bound to phosphorus-rich (phospholipid) structures in the glycogen. SP-B and SP-C, but not SP-A, localized predominantly to the glycogen stores. Collectively, these data suggest that the glycogen stores in fetal type II cells are a cellular site for surfactant PC synthesis and LB formation/maturation consistent with the idea that the glycogen is a unique substrate for surfactant lipids.  相似文献   

5.
Acute respiratory distress syndrome (ARDS) is a pulmonary disorder associated with alterations to the pulmonary surfactant system. Recent studies showed that supra-physiological levels of cholesterol in surfactant contribute to impaired function. Since cholesterol is incorporated into surfactant within the alveolar type II cells which derives its cholesterol from serum, it was hypothesized that serum hypercholesterolemia would predispose the host to the development of lung injury due to alterations of cholesterol content in the surfactant system.Wistar rats were randomized to a standard lab diet or a high cholesterol diet for 17–20 days. Animals were then exposed to one of three models of lung injury: i) acid aspiration ii) ventilation induced lung injury, and iii) surfactant depletion. Following physiological monitoring, lungs were lavaged to obtain and analyze the surfactant system.The physiological results showed there was no effect of the high cholesterol diet on the severity of lung injury in any of the three models of injury. There was also no effect of the diet on surfactant cholesterol composition. Rats fed a high cholesterol diet had a significant impairment in surface tension reducing capabilities of isolated surfactant compared to those fed a standard diet exposed to the surfactant depletion injury. In addition, only rats that were exposed to ventilation induced lung injury had elevated levels of surfactant associated cholesterol compared to non-injured rats.It is concluded that serum hypercholesterolemia does not predispose rats to altered surfactant cholesterol composition or to lung injury. Elevated cholesterol within surfactant may be a marker for ventilation induced lung damage.  相似文献   

6.
Fetal rat lung was placed in organ culture at 15 days gestation (22 days total gestation period), before biochemical and morphological development of the pulmonary surfactant system. At the fifth day of culture numerous Type II cells containing lamellar bodies were present as determined by electron micrography. Phospholipid accumulation in the cultures increased abruptly beginning at 6 days in culture. The phospholipid which accumulated between the sixth and twelfth culture days was composed of 21--27% disaturated phosphatidylcholines. Both the percent of disaturated phosphatidylcholines in the phospholipid fraction and the qualitative pattern of accumulation as a function of time were similar to observations for fetal rat lung developing in vivo. The data presented provide evidence for development of the pulmonary surfactant system in organ culture in vitro.  相似文献   

7.
1. The glycogen present in the liver of rat foetuses was labelled by injecting a trace amount of [6-(3)H]glucose into the mother at 19.5 days of gestation. The radioactivity incorporated in the glycogen 4h after the administration of the label was still present 38h later. A large proportion of this radioactivity was on the outer chains of the polysaccharide. These results indicate that there is normally almost no glycogen degradation in the foetal liver. In contrast, glycogen breakdown occurs very rapidly in the livers of foetuses whose mother is anaesthetized. 2. Glycogen synthetase is present in the liver at day 16 of gestation at a concentration as high as 30% of that in the adult, but essentially as an inactive (b) enzyme. The appearance of synthetase phosphatase between days 18 and 19 corresponds to that of synthetase a and to the beginning of glycogen synthesis. From day 19 to 21.5 the amount of synthetase a present in the foetal liver is just sufficient to account for the actual rate of glycogen deposition. 3. The content of total phosphorylase in the foetal liver increases continuously from day 16 to birth. However, a precise measurement of the a and b forms of the enzyme in the liver of non-anaesthetized foetuses is not possible. Taking the rate of glycogenolysis as an appropriate index of phosphorylase activity, we conclude that this enzyme is almost entirely in the inactive form in the foetal liver under normal conditions. 4. The accumulation of glycogen in the liver during late pregnancy may therefore be explained by a relatively slow rate of synthesis and a nearly total absence of degradation.  相似文献   

8.
Pulmonary surfactant is a lipid-protein material that is essential for normal lung function. Maintaining normal and consistent alveolar amounts of surfactant is in part dependent on clearance of surfactant by alveolar macrophages (AM). The present study utilized a rat model of AM depletion to determine the impact on surfactant pool sizes and function over time. Male Sprague-Dawley rats were anesthetized and intratracheally instilled with PBS-liposomes (PBS-L) or dichloromethylene diphosphonic acid (DMDP) containing liposomes (DMDP-L) and were killed at various time points up to 21 days for compliance measurements, AM cell counts, and surfactant analysis. AM numbers were significantly decreased 1, 2, and 3 days after instillation in DMDP-L vs. PBS-L, with 72% depletion at 3 days. AM numbers returned to normal levels by 5 days. In DMDP-L rats, there was a rapid increase in surfactant-phospholipid pools, showing a ninefold increase in the amount of surfactant in the lavage 3 days after liposome instillation. Surfactant accumulation progressed up to 7 days, with pools normalizing by 21 days. The increase in surfactant was due to increases in both subfractions of surfactant, the large aggregates (LA) and small aggregates. Surfactant protein A levels, relative to LA phospholipids, were not increased. There was a decreased extent of surfactant conversion in vitro for LA from DMDP-L rats compared with controls. It is concluded that the procedure of AM depletion significantly affects surfactant metabolism. The increased endogenous surfactant must be considered when utilizing the AM depletion model to study the role of these cells during lung insults.  相似文献   

9.
In birds and oviparous reptiles, hatching is often a lengthy and exhausting process, which commences with pipping followed by lung clearance and pulmonary ventilation. We examined the composition of pulmonary surfactant in the developing lungs of the chicken, Gallus gallus, and of the bearded dragon, Pogona vitticeps. Lung tissue was collected from chicken embryos at days 14, 16, 18 (prepipped), and 20 (postpipped) of incubation and from 1 day and 3 wk posthatch and adult animals. In chickens, surfactant protein A mRNA was detected using Northern blot analysis in lung tissue at all stages sampled, appearing relatively earlier in development compared with placental mammals. Chickens were lavaged at days 16, 18, and 20 of incubation and 1 day posthatch, whereas bearded dragons were lavaged at day 55, days 57-60 (postpipped), and days 58-61 (posthatched). In both species, total phospholipid (PL) from the lavage increased throughout incubation. Disaturated PL (DSP) was not measurable before 16 days of incubation in the chick embryo nor before 55 days in bearded dragons. However, the percentage of DSP/PL increased markedly throughout late development in both species. Because cholesterol (Chol) remained unchanged, the Chol/PL and Chol/DSP ratios decreased in both species. Thus the Chol and PL components are differentially regulated. The lizard surfactant system develops and matures over a relatively shorter time than that of birds and mammals. This probably reflects the highly precocial nature of hatchling reptiles.  相似文献   

10.
Summary Lung organ culture has been a widely used system for studying differentiation and maturation of alveolar epithelium through various culture conditions. The purpose of this work was to carefully characterize in vitro lung biochemical diffeentiation through isolation of surfactant fraction from tissue and to search for optimal culture conditions. Fetal rat lung was explanted on the 18th gestational day for studying glycogen storage, and on the 20th gestational day for studying surfactant accretion, and cultivated for 48 h. Morphologic differentiation was studies byelectron microscopy tissue explanted on the 17th or 18th gestational days and cultivated for various times. Glycogen storage was greater on fluid medium, although less than occurring in vivo. Cellular integrity and surfactant accumulation were maximal on a semisolid medium containing 0.5% agar. Use of O2-CO2 instead of air-CO2 for gassing the explants slighlty decreased phospholipid accumulation. Among media used in previous lung culture studies, Waymouth MB 752/1 was the only one to allow net glycogen accumulation in vitro. The most favorable media for surfactant phospholipid accretion were Waymouth MB 752/1, Eagle’s minimum essential and its Dulbeccco’s modification, CMRL 1066, and NCTC 109. They allowed a 12- to 14-fold increase of surfactant fraction phospholipids in vitro, which is similar to the increase occurring in vivo during the same peiod. Ham’s F10 and F12 media allowed a six fold increase. RPMI 1640 and medium 199 (M199) allowed only a three fold increase. Phospholipid concentration in nonsurfactant fraction only doubled during culture, and differences between various media were much less marked. DNA concentration changed little during culture. Morphologic differentiation of epithelial cells was advanced as compared with in vivo timing in a medium allowing maximal surfactant accretion (Waymouth MB 752/1) but not in a medium allowing low surfactant increase (RPMI 1640). The possible role of compositional differences between media is discussed.  相似文献   

11.
A murine model of bone marrow transplant (BMT)-related lung injury was developed to study how infection sensitizes lung to the damaging effects of total body irradiation (TBI) at infectious and TBI doses that individually do not cause injury. Mice infected with Pneumocystis carinii exhibited an asymptomatic, rapid, and transient influx of eosinophils and T cells in bronchoalveolar lavage fluid (BALF). In contrast, mice infected with P. carinii 7 days before receiving TBI and syngeneic BMT (P. carinii/TBI mice) exhibited severe pulmonary dysfunction, surfactant aggregate depletion, and surfactant activity reductions at 17 days post-BMT. BALF from P. carinii/TBI mice contained a disproportionate initial influx of CD4(+) T cells (CD4(+):CD8(+) ratio of 2.7) that correlated with progressive lung injury (from 8 to 17 days post-BMT). Levels of TNF-alpha in BALF were significantly increased in P. carinii/TBI mice compared with mice given either insult alone, with peak values found at 11 days post-BMT. In vivo depletion of CD4(+) T cells in P. carinii/TBI mice abrogated pulmonary dysfunction and reduced TNF-alpha levels in BALF, whereas depletion of CD8(+) T cells did not affect lung compliance or TNF-alpha. Lung injury was not attributable to direct P. carinii damage, since CD4-depleted P. carinii/TBI mice that exhibited no injury had higher average lung P. carinii burdens than either mice given P. carinii alone or undepleted P. carinii/TBI mice. Together, these results indicate that P. carinii infection can sensitize the lung to subsequent TBI-mediated lung injury via a process dependent on non-alloreactive CD4(+) T cells.  相似文献   

12.
1. Radioactively labelled pulmonary surfactant was prepared in an isolated perfused lung system provided with [14C]hexadecanoate. 2. After intratracheal administration of pulmonary surfactant radioactively labelled components were rapidly distributed into different lung fractions, including macrophages (free cells), but most of the radioactive label was accumulated by the lung tissue. 3. Alveolar macrophages, maintained in a variety of culture media in the presence and absence of mineral particles, incorporated a low percentage (11%) of radioactively labelled components when incubated with the surfactant, although evolution of labelled CO2 (6% of the original total activity) suggested that some breakdown of the components had taken place. 4. In similar cultures little intracellular accumulation or extracellular release of non-esterified fatty acids was demonstrated, indicating minimal catabolism of the high-molecular-weight lipid components of surfactant (particularly phosphatidylcholine). 5. However, experiments in vitro designed to simulate the lysosomal degradation of endocytosed surfactant indicated that the macrophage had enzymes capable of releasing non-esterified fatty acids, particularly hexadecanoate, from the lipoprotein complex. 6. It is argued that lung cells, other than alveolar macrophages, may also have a role in surfactant turnover.  相似文献   

13.
The teratogen nitrofen produces a congenital diaphragmatic hernia (CDH) and pulmonary hypoplasia in rodent fetuses that closely parallel observations made in humans. We hypothesized that these changes may be due to primary pulmonary hypoplasia and not herniation of the abdominal contents. Timed-pregnant rats were given nitrofen on day 9, and fetuses were harvested on days 13 through 21. Initial evagination of lung buds on gestational day 11 was not delayed in nitrofen-treated fetuses. On gestational day 13, however, there was a significant decrease in the number of terminal end buds in the lungs of nitrofen-exposed fetuses vs. controls. Thymidine-labeled lung epithelial and mesenchymal cells were significantly decreased in nitrofen-treated lungs. Lungs from nitrofen-treated fetuses exhibited wide septae with disorganized, compacted tissue, particularly around the air spaces. Expression of surfactant protein B and C mRNAs was significantly decreased in the nitrofen litters. In situ hybridization of fetal lung tissue at all gestational ages showed no difference in the expression of vascular endothelial growth factor, Flk-1, or Flt-1 mRNAs. Because closure of the diaphragm is completed on gestational day 16 in the rat, our results suggest that lung hypoplasia in this model of CDH is due at least in part to a primary effect of nitrofen on the developing lung.  相似文献   

14.
A correlation of autoradiographic and histochemical data indicates that the type I and II pulmonary epithelial cells are endodermally-derived; and, that the interstitial pulmonary cells are mesodermally-derived. Tritiated thymidine (T-H3) was found to be an excellent cell marker for in vivo developmental studies of mammalian (rat) lung. At a dose of 3 μc per gm (specific activity, 15.6–16.9 c per mM) maternal body weight, T-H3 crosses the placenta in amounts sufficient to effect heavy labeling of dividing cells. A partial placental barrier to T-H3 was found in late stages of development. Following an injection of T-H3 on day 16 of gestation, a higher rate of endodermal cell division was reflected by higher labeling indices and a steeper slope of the endodermal dilution curve as opposed to the mesoderm. This differential in labeling was maintained through the third postnatal day. Neonatal labeling patterns of the definitive cell types (type I and II pulmonary epithelial cells, interstitial pulmonary cells) reflected those of their germ layer precursors. Histochemical analysis of the developing rat lung demonstrated large accumulations of cytoplasmic glycogen in areas of rapid cell division (endodermal cells). As the mitotic rate decreased and cellular differentiation progressed, glycogen decreased; postnatally it is not a feature of mature pulmonary cell types.  相似文献   

15.
Glycogen content in the brain, liver and skeletal muscles of rats bearing ascite Zajdela hepatoma (AZH) and solid 27 hepatoma (27-H) has been studied. Serum glucose levels directly correlated with liver glycogen reserves. In the terminal stage of tumor growth depletion of liver glycogen was observed, while the stores of muscle glycogen did not diminish. Within 1-4 days (AZH) and 15-30 days (27-H) after implantation the stores even exceeded those of control healthy rats. In the terminal stage, in spite of hypoglycaemia development, the content of brain glycogen was significantly elevated in both groups of animals.  相似文献   

16.
The direct effects of insulin and glucose on glycogen accumulation were compared using monolayers of chicken embryo hepatocytes which, when cultured in chemically defined medium without hormones, retain viability for several days but become depleted of glycogen. The data strongly suggest that insulin is the major direct signal for hepatic glycogen synthesis, while glucose supports glycogen accumulation primarily in its role as a substrate. Insulin alone, when added to the cells in physiological concentrations, either shortly after isolation or throughout culture, restored glycogen to the maximal levels found in the liver of the fed chicken. Addition of increasing amounts of glucose in the absence of insulin, in contrast, yielded proportional but limited increases in glycogen deposition attaining not more than 30% of the maximal storage capacity of the cells. This hormone-independent glycogenesis was characterized by a 30-min burst of glycogen deposition immediately following a stepped increase of glucose, with no detectable change in glycogen synthase activity. Insulin-dependent glycogenesis evidenced a much slower rate of glycogen deposition and was accompanied by a near tripling of glycogen synthase activity. Insulin-induced glycogen stores were broken down following removal of the hormone, even when glucose was present in great excess, indicating that the cells require insulin to maintain as well as build up maximal levels of glycogen. In the presence of glucagon, insulin-induced glycogen stores were rapidly degraded, but glucose-induced glycogenesis was not inhibited. The actions of insulin and glucose in this system are both qualitatively and quantitatively similar to those that have been observed in the diabetic animal.  相似文献   

17.
Human fetal lung (14-18 weeks gestation) was maintained in either organ or organotypic culture. By 4 days in organ culture or 14 days in organotypic culture, epithelial cells within both culture systems exhibited well-developed apical microvilli and possessed numerous intracellular lamellar bodies characteristic of surfactant phospholipid stores. However, analysis of the pattern of synthesis of individual molecular species of phosphatidylcholine by [14C]choline incorporation and reversed-phase h.p.l.c. showed that this apparent maturation was not paralleled by an increased synthesis of the dipalmitoyl species in either culture system. By contrast, the fractional synthesis of dipalmitoyl phosphatidylcholine, expressed as a percentage of total [14C]choline incorporation, decreased with time in both organ and organotypic culture. Moreover, these fractions were not significantly different from those measured in parallel monolayer cultures of mixed human fetal lung cells that displayed mainly fibroblast morphology. These results suggest that the synthesis pattern of phosphatidylcholine species by lung cells in culture is determined principally by their incubation conditions and not by their state of apparent maturation.  相似文献   

18.
Light and electron microscopy were used to study the morphology of uterine luminal epithelium from 4 or 5 gilts slaughtered on each of days 10, 13, 16, and 19 of the estrous cycle. Ultrastructural evidence indicated that metabolic activity and accumulation of glycogen by the uterine epithelium increased between days 10 and 16 of the estrous cycle. This phase of high synthetic activity had been terminated by day 19, as evidenced by the reduction or absence of glycogen deposits and decreased incidence of organelles associated with synthetic activity. Diffuse degeneration of epithelial cells occurred throughout the period of study but was maximal between days 16 and 19. Mitotic activity indicated that cell replacement also occurred between day 16 and day 19.  相似文献   

19.
Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.  相似文献   

20.
Glutathione is a tripeptide important in a number of diverse cellular functions including enzymatic reactions involved in prostaglandin endoperoxide metabolism. We have previously reported that cyclophosphamide administration to rats results in acute lung injury manifested by increased bronchoalveolar lavage albumin concentrations. In the current study we examine whether cyclophosphamide treatment affects pulmonary glutathione stores or bronchoalveolar endoperoxide metabolic product levels and whether these effects may be related to acute lung injury caused by the drug. We show that cyclophosphamide treatment causes a dose-dependent reduction in pulmonary glutathione stores 4 h after drug administration. In addition, acute lung injury as the result of cyclophosphamide can be abrogated by coadministration of oxothiazolidine carboxylate, an intracellular cysteine delivery system that also reverses pulmonary glutathione depletion induced by cyclophosphamide in our study. Finally, cyclophosphamide treatment reduces prostaglandin E2 concentrations in bronchoalveolar lavage and alveolar macrophage culture supernatant in a dose-dependent fashion and increases bronchoalveolar thromboxane concentrations in low dose-treated animals. These effects are reversed to a variable degree by coadministration of oxothiazolidine carboxylate. Our study suggests in vivo pulmonary arachidonic acid metabolism and cyclophosphamide-induced acute lung injury are modulated by cellular glutathione stores. These findings may have important implications for the treatment of acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号