首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Wheat is the most important cereal produced in Iran. A mycological survey was carried out for the first time, on the stored wheat samples in Tehran, East Azarbayejan and Mazandaran provinces in 2007. Exogenous and endogenous fungi, were isolated by the method of flotation with Malachite green agar (MGA 0.25) and Freeze blotter techniques respectively. In this study, 46 species belonging to 23 different genera were isolated.Cladosporium spp. (57.1–89.2%) andAlternaria spp. (82.4–100%) species were the predominant fungal species identified as endogenous mycoflora. The predominant exogenous fungi werePenicillium spp. (78.4–92.8%) andAspergillus spp. (71.4–85.7%) species.Fusarium proliferatum was the most prevalent species ofFusarium isolates.Aspergillus niger (39.4%) andAspergillus flavus (36.7%) were the predominantAspergillus species identified as exogenous mycoflora.Aspergillus flavus (26.6%) was the predominantAspergillus species identified as endogenous mycoflora. Flotation method with MGA 0.25 recommended for isolating of hyaline fungi from wheat cereals. In this study one isolate fromFusarium species was isolated on the basis of morphology and ribosomal internal transcribed spacer classified asFusarium langsethiae but on the basis of partial translation elongation factor-1alpha gene grouped withFusarium sporotrichioides. To our knowledge, this is the first report aboutF. cf.langsethiae in Iran and Asia.  相似文献   

2.
Availability of molecular methods, gene sequencing, and phylogenetic species recognition have led to rare fungi being recognized as opportunistic pathogens. Fungal keratitis and onychomycosis are fairly common mycoses in the tropics, especially among outdoor workers and enthusiasts. The frequently isolated etiological agents belong to genera Candida, Aspergillus, and Fusarium. Within the genus Fusarium, known to be recalcitrant to prolonged antifungal treatment and associated with poor outcome, members of the Fusarium solani species complex are reported to be most common, followed by members of the Fusarium oxysporum SC and the Fusarium fujikuroi SC (FFSC). Morphological differentiation among the various members is ineffective most times. In the present study, we describe different species of the FFSC isolated from clinical specimen in south India. All twelve isolates were characterized up to species level by nucleic acid sequencing and phylogenetic analysis. The molecular targets chosen were partial regions of the internal transcribed spacer rDNA region, the panfungal marker and translation elongation factor-1α gene, the marker of choice for Fusarium speciation. Phylogenetic analysis was executed using the Molecular Evolutionary Genetics Analysis software (MEGA7). In vitro susceptibility testing against amphotericin B, voriconazole, posaconazole, natamycin, and caspofungin diacetate was performed following the CLSI M38-A2 guidelines for broth microdilution method. The twelve isolates of the FFSC were F. verticillioides (n = 4), F. sacchari (n = 3), F. proliferatum (n = 2), F. thapsinum (n = 1), F. andiyazi (n = 1), and F. pseudocircinatum (n = 1). To the best of our knowledge, this is the first report of F. andiyazi from India and of F. pseudocircinatum as a human pathogen worldwide. Natamycin and voriconazole were found to be most active agents followed by amphotericin B. Elderly outdoor workers figured more among the patients and must be recommended protective eye wear.  相似文献   

3.
The effect of ethoxylated oleyl cetyl alcohol (Henkel, Serbia) on the growth and metabolic activity of Aspergillus niger and Fusarium lateritium was in the focus of this paper. The fungi were isolated from wastewater of Lepenica River (Kragujevac, Serbia) at a place where municipal wastewater discharged into the river. The fungi were grown in Czapek-Dox liquid nutrient medium without and with addition of 0.5% pollutant. The physico-chemical and biochemical changes of pH, total biomass dry weight, quantity of free and total organic acids, proteolytic activity and quality of carbohydrates were evaluated from 4-th to 19-th day of fungal growth. The capacity of fungi to decrease concentration of pollutant in medium was determined by cobalt thiocyanate method. The pollutant caused an inhibitory effect on biomass dry weight of A. niger and F. lateritium for 8.50 and 30.61%, respectively. Among tested fungi, A. niger had the better biodegradation capacity (83%) than F. lateritium (65%). Alkaline protease activity of A. niger enhanced in the presence of pollutant for 7.6% whereas the enzyme of F. lateritium retained about 62.2% activity. Overall, the obtained results indicate the potential application of tested fungi in wastewater treatment, detergent industry and biotechnology.  相似文献   

4.
Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.  相似文献   

5.
We studied metabolites synthesized by Bacillus subtilis strains, including the type strain of B. atrophaeus and phenotypically similar cultures. These metabolites were represented by polyene antibiotics with conjugated double bonds. Hexaenes from the strains under study inhibited the growth of phytopathogenic fungi Fusarium culmorum, F. sporotrichiella, F. oxysporum, Botrytis sorokiniana, Alternaria tenui, and Phytophthora infestans. The degree of growth inhibition depended on the test fungus.  相似文献   

6.
Identification of the fungus Fusarium oxysporum f. sp. pisi (Fop), the causal organism of wilt disease of pea, is a time consuming and arduous task. Diagnosis of Fop by traditional means requires more than 2 months and involves two steps, identification of species using morphological characters and formae specialispisi’ using pathogenicity assays. The ambiguous morphological differences between F. solani and F. oxysporum further complicate the diagnosis of F. oxysporum. A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) based method was developed to detect Fop from India. A PCR–RFLP marker, HPACAPS1380, generated after restriction of 28S rDNA region with enzyme MvaI, detected accurately the Fop among several other fungi with detection sensitivity of 5 fg of Fop genomic DNA. In a mixture of Fop and pea DNA, the sensitivity was 500 pg of Fop DNA in 50 ng of pea DNA. The assay was further refined to detect the Fop from infected tissues and infested soil. The current assay can detect Fop from culture, plant tissues and soil in a considerably shorter period of time compared to traditional methods.  相似文献   

7.
8.
9.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

10.
11.
A PCR system in the fluorescent amplification-based specific hybridization (FLASH) format was developed for the detection and identification of two important wheat pathogenic fungi Septoria tritici (teleomorph of Mycosphaerella graminicola) and Stagonospora nodorum (teleomorph of Phaeosphaeria nodorum), which cause spots on leaves and glumes, respectively. The pathogen detection system is based on the amplification of a genome fragment in the internal transcribed spacer 1 (ITS1) region and a site encoding the 5.8S ribosomal RNA. The forward primers to ITS1 and a universal reverse primer and a beacon type probe to the 5.8S ribosomal RNA region were chosen to provide the detection of the products in the FLASH format. This system was tested on different isolates of the pathogens, and on infected soil, leaf, and seed samples.  相似文献   

12.
The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.  相似文献   

13.
Seven non-basidiomycetic fungi, Aspergillus, Candida, Cladosporium, Fusarium, Monicillium, Trichoderma and Penicillium, and two basidiomycetic fungi, Pleurotus and Phanerochaete were isolated from a creosote-contaminated soil by using mineral salts medium and soil extract broth containing antibiotics. Soil contaminated with phenol, o-cresol, m-cresol and p-cresol was collected from the yard of a wood treatment plant in South Africa and inoculated with the strains of Aspergillus, Cladosporium, Fusarium, Monicillium, Penicillium and Phanerochaete, selected from the isolate. The soil in some of the treatment reactors was amended with nutrient supplements to give a C:N:P ratio of 25:5:1. A total of 18 duplicate treatments were established and incubated in the dark at 25°C for 70days. The soil in all the reactors was tilled weekly and moisture was maintained at 70% field capacity. Soil samples were collected every 2weeks for analysis of residual concentrations of the phenols tested, pH measurement and moisture content determination. The nutrient-supplemented treatments were more effective in degrading the phenols (between 84 and 100%) than those that were not supplemented. Barley, which was used as bulking agent enhanced the growth of the fungi and subsequently the degradation of the phenols. Inoculation with a mixture of the six fungal isolates promoted more phenol degradation than with single isolates.  相似文献   

14.
15.
The development of Fusarium culmorum and Pseudomonas fluorescens in soil, and the relations between them, were studied using membrane filters containing the fungus, the bacterium, or both microorganisms; the filters were incubated in soil. F. culmorum was identified by indirect immunofluorescence; the GUS-labeled strain was used to visualize P. fluorescens. It was found that F. culmorum introduced in soil can develop as a saprotroph, with the formation of mycelium, macroconidia, and a small amount of chlamydospores. Introduction of glucose and cellulose resulted in increased density of the F. culmorum mycelium and macroconidia. P. fluorescens suppressed the development of the F. culmorum mycelium in soil, but stimulated chlamydospore formation. Decreased mycelial density in the presence of P. fluorescens was more pronounced in soil without additions and less pronounced in the case of introduction of glucose or cellulose. F. culmorum had no effect on P. fluorescens growth in soil.  相似文献   

16.
Two new species in the Fusarium solani species complex (FSSC) are described and introduced. The new taxa are represented by German isolates CBS 142481 and CBS 142480 collected from commercial yard waste compost and vascular tissue of a wilting branch of hibiscus, respectively. The phylogenetic relationships of the collected strains to one another and within the FSSC were evaluated based on DNA sequences of 6 gene loci. Due to the limited sequence data available for reference strains in GenBank, however, a multi-gene phylogenetic analysis included partial sequences for the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2). Morphological and molecular phylogenetic data independently showed that these strains are distinct populations of the FSSC, nested within Clade 3. Thus, we introduce Fusarium stercicola and Fusarium witzenhausenense as novel species in the complex. In addition, 19 plant species of 7 legume genera were evaluated for their potential to host the newly described taxa. Eighteen plant species were successfully colonized, with 6 and 9 of these being symptomatic hosts for F. stercicola and F. witzenhausenense, respectively. As plants of the family Fabaceae are very distant to the originally sourced material from which the new taxa were recovered, our results suggest that F. stercicola and F. witzenhausenense are not host-specific and are ecologically fit to sustain stable populations in variety of habitats.  相似文献   

17.
18.
In 1998–2000 a monitoring of the spectrum of Fusarium species on winter wheat was carried out in the Rhineland. The epidemic spread ofFusarium spp. on wheat plants during growing season was investigated as well as the grain contamination after harvest.F avenaceum was the Fusarium species isolated most frequently followed byF culmorum, F poae andF graminearum. Microdochium nivale occurred considerably only in 1998. Both, susceptibility and plant height of the cultivars were correlated to the incidence of Fusarium species /M nivale on harvested kernels; interactions with cropping intensities were detected. The incidence ofF poae seemed to be independent of the cultivar-specific Fusarium susceptibility. Despite the lack of disease symptoms, between growth stages 45–85 mycelium ofFusarium spp. was detectable in the leaves as well as conidia on the leaf surfaces.  相似文献   

19.
Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. niveum (Fon), is one of the predominant diseases of watermelon. Resistance to Fon race 1 is conferred by a single major quantitative trait locus (QTL), Fo-1.1, but resolution of this region has been poor due to low marker density. In this study, a combination of whole genome resequencing of bulked segregants (QTL-seq analysis) followed by QTL mapping with kompetitive allele specific PCR (KASP) markers developed across Fo-1.1 successfully increased the resolution from 2.03 to 1.56 Mb and 315 kb, respectively. The linkage of the KASP markers to Fon race 1 resistance across a wide range of watermelon germplasm was validated in a set of elite watermelon cultivars. The linked markers described here provide a breeder-friendly toolkit immediately available for high-throughput genotyping in large-scale breeding programs for fine mapping and incorporation of Fon race 1 resistance in watermelon.  相似文献   

20.
Fusarium spp. are recognized as the second most frequently filamentous fungi causing opportunistic infections and particularly important due to the increasing number of immunocompromised patients. F. keratoplasticum (a member of F. solani species complex) is one of the Fusarium species commonly associated with human infection, and therefore, studies on the virulence of this fungus are needed. This study aimed to confirm the presence of melanin in F. keratoplasticum from a patient with systemic fusariosis. Immunofluorescence labeling with anti-melanin monoclonal antibody (MAb) was used to examine an expression of melanin in F. keratoplasticum in vitro and during infection. Electron spin resonance identified the particles extracted from F. keratoplasticum as stable free radical consistent with melanin. Lesional skin from the sites with fusariosis contained hyphal structures that could be labeled by melanin-binding MAb, while digestion of the tissue yielded dark particles that were reactive. These findings suggest that F. keratoplasticum hyphae and chlamydospores can produce melanin in vitro and that hyphae can synthesize pigment in vivo. Given the potential role of melanin in virulence of other fungi, this pigment in F. keratoplasticum may play a role in the pathogenesis of fusariosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号