首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Information Flow Analysis of Interactome Networks   总被引:1,自引:0,他引:1  
Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein–protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression data with interaction data in C. elegans and construct an interactome network for muscle-specific genes. We find that genes that rank high in terms of information flow in the muscle interactome network but not in the entire network tend to play important roles in muscle function. This framework for studying tissue-specific networks by the information flow model can be applied to other tissues and other organisms as well.  相似文献   

2.
Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.  相似文献   

3.
Vidal M  Cusick ME  Barabási AL 《Cell》2011,144(6):986-998
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.  相似文献   

4.
A decade of high-throughput screenings for intraviral and virus-host protein-protein interactions led to the accumulation of data and to the development of theories on laws governing interactome organization for many viruses. We present here a computational analysis of intraviral protein networks (EBV, FLUAV, HCV, HSV-1, KSHV, SARS-CoV, VACV, and VZV) and virus-host protein networks (DENV, EBV, FLUAV, HCV, and VACV) from up-to-date interaction data, using various mathematical approaches. If intraviral networks seem to behave similarly, they are clearly different from the human interactome. Viral proteins target highly central human proteins, which are precisely the Achilles' heel of the human interactome. The intrinsic structural disorder is a distinctive feature of viral hubs in virus-host interactomes. Overlaps between virus-host data sets identify a core of human proteins involved in the cellular response to viral infection and in the viral capacity to hijack the cell machinery for viral replication. Host proteins that are strongly targeted by a virus seem to be particularly attractive for other viruses. Such protein-protein interaction networks and their analysis represent a powerful resource from a therapeutic perspective.  相似文献   

5.
Among other effects, post-translational modifications (PTMs) have been shown to exert their function via the modulation of protein-protein interactions. For twelve different main PTM-types and associated subtypes and across 9 diverse species, we investigated whether particular PTM-types are associated with proteins with specific and possibly “strategic” placements in the network of all protein interactions by determining informative network-theoretic properties. Proteins undergoing a PTM were observed to engage in more interactions and positioned in more central locations than non-PTM proteins. Among the twelve considered PTM-types, phosphorylated proteins were identified most consistently as being situated in central network locations and with the broadest interaction spectrum to proteins carrying other PTM-types, while glycosylated proteins are preferentially located at the network periphery. For the human interactome, proteins undergoing sumoylation or proteolytic cleavage were found with the most characteristic network properties. PTM-type-specific protein interaction network (PIN) properties can be rationalized with regard to the function of the respective PTM-carrying proteins. For example, glycosylation sites were found enriched in proteins with plasma membrane localizations and transporter or receptor activity, which generally have fewer interacting partners. The involvement in disease processes of human proteins undergoing PTMs was also found associated with characteristic PIN properties. By integrating global protein interaction networks and specific PTMs, our study offers a novel approach to unraveling the role of PTMs in cellular processes.  相似文献   

6.
As protein-protein interaction is intrinsic to most cellular processes, the ability to predict which proteins in the cell interact can aid significantly in identifying the function of newly discovered proteins, and in understanding the molecular networks they participate in. Here we demonstrate that characteristic pairs of sequence-signatures can be learned from a database of experimentally determined interacting proteins, where one protein contains the one sequence-signature and its interacting partner contains the other sequence-signature. The sequence-signatures that recur in concert in various pairs of interacting proteins are termed correlated sequence-signatures, and it is proposed that they can be used for predicting putative pairs of interacting partners in the cell. We demonstrate the potential of this approach on a comprehensive database of experimentally determined pairs of interacting proteins in the yeast Saccharomyces cerevisiae. The proteins in this database have been characterized by their sequence-signatures, as defined by the InterPro classification. A statistical analysis performed on all possible combinations of sequence-signature pairs has identified those pairs that are over-represented in the database of yeast interacting proteins. It is demonstrated how the use of the correlated sequence-signatures as identifiers of interacting proteins can reduce significantly the search space, and enable directed experimental interaction screens.  相似文献   

7.
The complex integrity of the cells and its sudden, but often predictable changes can be described and understood by the topology and dynamism of cellular networks. All these networks undergo both local and global rearrangements during stress and development of diseases. Here, we illustrate this by showing the stress-induced structural rearrangement of the yeast protein-protein interaction network (interactome). In an unstressed state, the yeast interactome is highly compact, and the centrally organized modules have a large overlap. During stress, several original modules became more separated, and a number of novel modules also appear. A few basic functions such as theproteasome preserve their central position; however, several functions with high energy demand, such the cell-cycle regulation loose their original centrality during stress. A number of key stress-dependent protein complexes, such as the disaggregation-specific chaperone, Hsp104 gain centrality in the stressed yeast interactome. Molecular chaperones, heat shock, or stress proteins became established as key elements in our molecular understanding of the cellular stress response. Chaperones form complex interaction networks (the chaperome) with each other and their partners. Here, we show that the human chaperome recovers the segregation of protein synthesis-coupled and stress-related chaperones observed in yeast recently. Examination of yeast and human interactomes shows that chaperones 1) are intermodular integrators of protein-protein interaction networks, which 2) often bridge hubs and 3) are favorite candidates for extensive phosphorylation. Moreover, chaperones 4) become more central in the organization of the isolated modules of the stressed yeast protein-protein interaction network, which highlights their importance in the decoupling and recoupling of network modules during and after stress. Chaperone-mediated evolvability of cellular networks may play a key role in cellular adaptation during stress and various polygenic and chronic diseases, such as cancer, diabetes or neurodegeneration.  相似文献   

8.
Proteins play an essential role in the vital biological processes governing cellular functions. Most proteins function as members of macromolecular machines, with the network of interacting proteins revealing the molecular mechanisms driving the formation of these complexes. Profiling the physiology-driven remodeling of these interactions within different contexts constitutes a crucial component to achieving a comprehensive systems-level understanding of interactome dynamics. Here, we apply co-fractionation mass spectrometry and computational modeling to quantify and profile the interactions of ∼2000 proteins in the bacterium Escherichia coli cultured under 10 distinct culture conditions. The resulting quantitative co-elution patterns revealed large-scale condition-dependent interaction remodeling among protein complexes involved in diverse biochemical pathways in response to the unique environmental challenges. The network-level analysis highlighted interactome-wide biophysical properties and structural patterns governing interaction remodeling. Our results provide evidence of the local and global plasticity of the E. coli interactome along with a rigorous generalizable framework to define protein interaction specificity. We provide an accompanying interactive web application to facilitate the exploration of these rewired networks.  相似文献   

9.
Protein-protein interaction network-based study of viral pathogenesis has been gaining popularity among computational biologists in recent days. In the present study we attempt to investigate the possible pathways of hepatitis-C virus (HCV) infection by integrating the HCV-human interaction network, human protein interactome and human genetic disease association network. We have proposed quasi-biclique and quasi-clique mining algorithms to integrate these three networks to identify infection gateway host proteins and possible pathways of HCV pathogenesis leading to various diseases. Integrated study of three networks, namely HCV-human interaction network, human protein interaction network, and human proteins-disease association network reveals potential pathways of infection by the HCV that lead to various diseases including cancers. The gateway proteins have been found to be biologically coherent and have high degrees in human interactome compared to the other virus-targeted proteins. The analyses done in this study provide possible targets for more effective anti-hepatitis-C therapeutic involvement.  相似文献   

10.
In cellular systems, biophysical interactions between macromolecules underlie a complex web of functional interactions. How biophysical and functional networks are coordinated, whether all biophysical interactions correspond to functional interactions, and how such biophysical‐versus‐functional network coordination is shaped by evolutionary forces are all largely unanswered questions. Here, we investigate these questions using an “inter‐interactome” approach. We systematically probed the yeast and human proteomes for interactions between proteins from these two species and functionally characterized the resulting inter‐interactome network. After a billion years of evolutionary divergence, the yeast and human proteomes are still capable of forming a biophysical network with properties that resemble those of intra‐species networks. Although substantially reduced relative to intra‐species networks, the levels of functional overlap in the yeast–human inter‐interactome network uncover significant remnants of co‐functionality widely preserved in the two proteomes beyond human–yeast homologs. Our data support evolutionary selection against biophysical interactions between proteins with little or no co‐functionality. Such non‐functional interactions, however, represent a reservoir from which nascent functional interactions may arise.  相似文献   

11.
Xu F  Li G  Zhao C  Li Y  Li P  Cui J  Deng Y  Shi T 《BMC genomics》2010,11(Z2):S2

Background

Many essential cellular processes, such as cellular metabolism, transport, cellular metabolism and most regulatory mechanisms, rely on physical interactions between proteins. Genome-wide protein interactome networks of yeast, human and several other animal organisms have already been established, but this kind of network reminds to be established in the field of plant.

Results

We first predicted the protein protein interaction in Arabidopsis thaliana with methods, including ortholog, SSBP, gene fusion, gene neighbor, phylogenetic profile, coexpression, protein domain, and used Naïve Bayesian approach next to integrate the results of these methods and text mining data to build a genome-wide protein interactome network. Furthermore, we adopted the data of GO enrichment analysis, pathway, published literature to validate our network, the confirmation of our network shows the feasibility of using our network to predict protein function and other usage.

Conclusions

Our interactome is a comprehensive genome-wide network in the organism plant Arabidopsis thaliana, and provides a rich resource for researchers in related field to study the protein function, molecular interaction and potential mechanism under different conditions.
  相似文献   

12.
Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.  相似文献   

13.
Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that many are non-functional. However, this is based on the assumption that protein phosphorylation modulates protein function through specific position on protein sequence. Based on emerging understanding on phospho-regulation of cellular activities, we argue, with examples, that non-positionally conserved phosphorylation sites can very well be functional. We previously identified phosphorylation events that need not be conserved at same positions across orthologous proteins but are likely maintained by evolutionary conserved signaling networks through orthologous kinases. We found that proteins with such conserved phosphorylation patterns are statistically over-represented with protein and DNA-binding annotation. Here, we further correlated these proteins with protein-protein interaction data from an independent systematic study and observed they indeed interact frequently with other proteins. Hence, we speculate that non-positionally conserved phosphorylation site could be modulating biomolecular association of phosphorylated proteins possibly through fine-tuning protein’s bulk electrostatic charge and through creating binding sites for phospho-binding interaction domains. We, therefore, advocate the development of complementary evolutionary approaches to interpret physiological important sites.  相似文献   

14.
Currently available protein-protein interaction (PPI) network or 'interactome' maps, obtained with the yeast two-hybrid (Y2H) assay or by co-affinity purification followed by mass spectrometry (co-AP/MS), only cover a fraction of the complete PPI networks. These partial networks display scale-free topologies--most proteins participate in only a few interactions whereas a few proteins have many interaction partners. Here we analyze whether the scale-free topologies of the partial networks obtained from Y2H assays can be used to accurately infer the topology of complete interactomes. We generated four theoretical interaction networks of different topologies (random, exponential, power law, truncated normal). Partial sampling of these networks resulted in sub-networks with topological characteristics that were virtually indistinguishable from those of currently available Y2H-derived partial interactome maps. We conclude that given the current limited coverage levels, the observed scale-free topology of existing interactome maps cannot be confidently extrapolated to complete interactomes.  相似文献   

15.
16.
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a 'stratus-cumulus' type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes.  相似文献   

17.
Protein interaction networks comprise thousands of individual binary links between distinct proteins. Whilst these data have attracted considerable attention and been the focus of many different studies, the networks, their structure, function, and how they change over time are still not fully known. More importantly, there is still considerable uncertainty regarding their size, and the quality of the available data continues to be questioned. Here, we employ statistical models of the experimental sampling process, in particular capture–recapture methods, in order to assess the false discovery rate and size of protein interaction networks. We uses these methods to gauge the ability of different experimental systems to find the true binary interactome. Our model allows us to obtain estimates for the size and false-discovery rate from simple considerations regarding the number of repeatedly interactions, and provides suggestions as to how we can exploit this information in order to reduce the effects of noise in such data. In particular our approach does not require a reference dataset. We estimate that approximately more than half of the true physical interactome has now been sampled in yeast.  相似文献   

18.
Cancer causes millions of deaths annually and microtubule-targeting agents(MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identi?ed as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects.This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment.  相似文献   

19.
To understand the biology of the interactome, the covisualization of protein interactions and other protein-related data is required. In this study, we have adapted a 3-D network visualization platform, GEOMI, to allow the coanalysis of protein-protein interaction networks with proteomic parameters such as protein localization, abundance, physicochemical parameters, post-translational modifications, and gene ontology classification. Working with Saccharomyces cerevisiae data, we show that rich and interactive visualizations, constructed from multidimensional orthogonal data, provide insights on the complexity of the interactome and its role in biological processes and the architecture of the cell. We present the first organelle-specific interaction networks, that provide subinteractomes of high biological interest. We further present some of the first views of the interactome built from a new combination of yeast two-hybrid data and stable protein complexes, which are likely to approximate the true workings of stable and transient aspects of the interactome. The GEOMI tool and all interactome data are freely available by contacting the authors.  相似文献   

20.
Large-scale protein-protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific "bait" protein and its associated "prey" proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait-prey and cocomplexed preys (prey-prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein-protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait-prey and prey-prey interactions can be used to refine network topology and extend known protein networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号