首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

2.
Evidence from epidemiologic, clinical, and experimental studies has shown that a suboptimal intrauterine environment during early pregnancy can alter fetal growth and gestation length and is associated with an increased prevalence of adult hypertension and cardiovascular disease. It has been postulated that maternal nutrient restriction may act to reprogram the development of the pituitary-adrenal axis, resulting in excess glucocorticoid exposure and adverse health outcomes in later life. It is unknown, however, whether maternal nutrient restriction during the periconceptional period alters the development of the fetal pituitary-adrenal axis or whether the effects of periconceptional undernutrition can be reversed by the provision of an adequate level of maternal nutrition throughout the remainder of pregnancy. We have investigated the effect of restricted periconceptional nutrition (70% of control feed allowance) from 60 days before until 7 days after mating and the effect of restricted gestational nutrition from Day 8 to 147 of gestation on the development of the fetal hypothalamo-pituitary adrenal (HPA) axis in the sheep. In these studies, we have also investigated the effects of fetal number and sex on the pituitary-adrenal responses to periconceptional and gestational undernutrition. In ewes maintained on a control diet throughout the periconceptional and gestational periods, fetal plasma ACTH concentrations were higher and the prepartum surge in cortisol occurred earlier in singletons compared with twins. Plasma ACTH concentrations were also significantly higher in male compared with female singletons, and in twin fetuses, the prepartum surge in cortisol concentrations occurred earlier in males than in females. Periconceptional undernutrition resulted in higher fetal plasma concentrations of ACTH between 110 and 145 days of gestation and a significantly greater cortisol response to a bolus dose of corticotropin-releasing hormone in twin, but not singleton, fetuses in late gestation. We have therefore demonstrated that fetal number and sex each has an impact on the timing of the prepartum activation of the HPA axis in the sheep. Restriction of the level of maternal nutrition before and in the first week of a twin pregnancy results in stimulation of the fetal pituitary-adrenal axis in late gestation, and this effect is not reversed by the provision of a maintenance control diet from the second week of pregnancy.  相似文献   

3.
In the intact, unstressed ovine fetus, both plasma immunoreactive adrenocorticotrophin (ACTH) and blood cortisol concentrations increased after 121 days gestation. The mean ACTH and cortisol concentrations in intact fetuses of 90-121, 122-135 and 136-144 days gestation were for ACTH 20.4 +/- 3.9 (50) (mean +/- SEM, n), 30.2 +/- 5.6 (26) and 56.0 +/- 6.3 pg/ml (37) respectively, and for cortisol 0.07 +/- 0.01 (24), 0.17 +/- 0.03 (21) and 0.64 +/- 0.13 microgram/100 ml (15), respectively. After 121 days ACTH and cortisol concentrations were correlated positively. Cortisol infused into intact or adrenalectomized fetuses and corticosterone infused into adrenalectomized fetuses suppressed fetal plasma ACTH concentrations. In summary, ACTH and cortisol increase concomitantly after 122 days, so that it is highly probable that ACTH is the trophic stimulus for fetal adrenal maturation. The suppression of ACTH by cortisol and corticosterone suggests that these are the natural feedback regulators. It is proposed that while the mechanism for cortisol feedback may exist early in gestation, it is not until after 121 days that feedback control of ACTH becomes evident and physiologically important.  相似文献   

4.
In previous studies on regulation of fetal adrenocorticotropin (ACTH) secretion, corticotropin releasing factor (CRF) and arginine vasopressin (AVP) have been administered by peripheral intravascular infusion. In order to look at an alternate route of administration, we investigated the effect of continuous intracerebroventricular administration of AVP to the fetus on fetal plasma ACTH and fetal and maternal plasma cortisol concentrations. Sheep fetuses (n = 9) were instrumental with carotid artery and lateral cerebral ventricular catheters. Fetuses were given intracerebroventricular infusion from 125-134 days gestational age of artificial cerebrospinal fluid vehicle (n = 4), or AVP 250 mu U.min-1 continuously in artificial cerebrospinal fluid vehicle (n =5). Fetal blood was obtained daily between 09.00 and 12.00h and 20.00 and 23.00h. Over the infusion period, fetal plasma ACTH and cortisol concentrations in AVP infused fetuses increased (P less than 0.05) compared with the vehicle infused group. Gestation length for the fetuses in the AVP and vehicle infused groups were 139 +/- 4.9 (n =4) and 145 +/- 4.6 (n = 3) days respectively (n.s.). Fetal plasma AVP concentrations in the AVP infused group were not different from the vehicle infused group.  相似文献   

5.
It is not clear if an increase in intra-adrenal cortisol is required to mediate the actions of adrenocorticotropic hormone (ACTH) on adrenal growth and steroidogenesis during the prepartum stimulation of the fetal pituitary-adrenal axis. We infused metyrapone, a competitive inhibitor of cortisol biosynthesis, into fetal sheep between 125 and 140 days of gestation (term = 147 +/- 3 days) and measured fetal plasma cortisol, 11-desoxycortisol, and ACTH; pituitary pro-opiomelanocortin mRNA and adrenal expression of ACTH receptor (melanocortin type 2 receptor), steroidogenic acute regulatory protein (StAR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), cytochrome P450 17-hydroxylase (CYP17), 3beta-hydroxysteroid dehydrogenase, and cytochrome P450 21-hydroxylase mRNA; and StAR protein in the fetal adrenal gland. Plasma ACTH and 11-desoxycortisol concentrations were higher (P < 0.05), whereas plasma cortisol concentrations were not significantly different in metyrapone- compared with vehicle-infused fetuses. The ratio of plasma cortisol to ACTH concentrations was higher (P < 0.0001) between 136 and 140 days than between 120 and 135 days of gestation in both metyrapone- and vehicle-infused fetuses. The combined adrenal weight and adrenocortical thickness were greater (P < 0.001), and cell density was lower (P < 0.01), in the zona fasciculata of adrenals from the metyrapone-infused group. Adrenal StAR mRNA expression was lower (P < 0.05), whereas the levels of mature StAR protein (30 kDa) were higher (P < 0.05), in the metyrapone-infused fetuses. In addition, adrenal mRNA expression of 11betaHSD2, CYP11A1, and CYP17 were higher (P < 0.05) in the metyrapone-infused fetuses. Thus, metyrapone administration may represent a unique model that allows the investigation of dissociation of the relative actions of ACTH and cortisol on fetal adrenal steroidogenesis and growth during late gestation.  相似文献   

6.
We have investigated the effect of intrafetal cortisol administration, before the normal prepartum cortisol surge, on the expression of 11beta hydroxysteroid dehydrogenase (11betaHSD) type 2 mRNA in the fetal adrenal. We also determined whether increased fetal cortisol concentrations can stimulate growth of the fetal adrenal gland or increase expression of adrenal steroidogenic enzymes. Cortisol (hydrocortisone succinate: 2.0-3.0 mg in 4.4 ml/24 h) was infused into fetal sheep between 109 and 116 days of gestation (cortisol infused; n = 12), and saline was administered to control fetuses (saline infused; n = 13) at the same age. There was no effect of cortisol infusion on the fetal adrenal:body weight ratio (cortisol: 101.7 +/- 5.3 mg/kg; saline: 108.2 +/- 4.3 mg/kg). The ratio of adrenal 11betaHSD-2 mRNA to 18S rRNA expression was significantly lower, however, in the cortisol-infused group (0.75 +/- 0.02) compared with the group receiving saline (1.65 +/- 0.14). There was no significant effect of intrafetal cortisol on the relative abundance of adrenal CYP11A1, CYP17, CYP21A1, and 3betaHSD mRNA. A premature elevation in fetal cortisol therefore resulted in a suppression of adrenal 11betaHSD-2. Increased intra-adrenal exposure to cortisol at this stage of gestation is, however, not sufficient to promote adrenal growth or steroidogenic enzyme gene expression.  相似文献   

7.
Rubin RT  Rhodes ME  Czambel RK 《Life sciences》2003,72(11):1209-1220
Leptin inhibits appetite by activating several neuroendocrine systems, including the hypothalamo-pituitary-adrenal cortical (HPA) axis. In turn, elevated glucocorticoids can increase circulating leptin. We therefore measured plasma leptin in 12 normal women and eight normal men administered low-dose physostigmine (PHYSO) and arginine vasopressin (AVP) to stimulate the HPA axis. The subjects underwent four test sessions 5-7 days apart: PHYSO (8 microg/kg IV), AVP (0.08 U/kg IM), PHYSO + AVP, and saline control. Serial blood samples were taken before and after pharmacologic challenge and analyzed for leptin, adrenocorticotropin (ACTH)1-39, cortisol, and AVP. Estradiol and testosterone also were measured at each test session. PHYSO and AVP produced no side effects in about half the subjects and predominantly mild side effects in the other half, with no significant female-male differences. Correlations between side effects (absent or present) after PHYSO or AVP and the corresponding leptin responses were nonsignificant. Baseline plasma leptin concentrations were significantly higher in the women than in the men (p < 0.003). Leptin concentrations following PHYSO remained unchanged from baseline, indicating that the short-lived ACTH and cortisol increases produced by PHYSO did not affect leptin secretion. In contrast, AVP administration, while also increasing ACTH and cortisol, suppressed leptin, to a significantly greater degree in the women than in the men (p = 0.01). This significant suppression of leptin by AVP has not been previously described; physiologically, it may be part of a negative feedback regulatory system between central leptin and its activation of the HPA axis, by inhibition of leptin production or acceleration of its clearance.  相似文献   

8.
Term and preterm labor are associated with increased fetal hypothalamic-pituitary-adrenal (HPA) activation and synthesis of prostaglandins (PGs) generated through the increased expression of prostaglandin H synthase-II (PGHS-II) in the placenta. Inhibition of PGHS-II has been advocated as a means of producing uterine tocolysis, but the effects of such treatment on fetal endocrine functions have not been thoroughly examined. Because PGE(2) is known to activate the fetal HPA axis, we hypothesized that administration of meloxicam, a PGHS-II inhibitor, to sheep in induced labor would suppress fetal HPA function. Chronically catheterized pregnant ewes were treated with RU486, a progesterone receptor antagonist, to produce active labor, and then treated with either high-maintenance-dose meloxicam, graded-maintenance-dose meloxicam, or a saline infusion. Maternal uterine contraction frequency increased 24 h after the RU486 injection and the animals were in active labor by 48 +/- 4 h. RU486 injection led to increased concentrations of PGE(2), ACTH, and cortisol in the fetal circulation, and increased concentrations of 13,14 dihydro 15-ketoprostaglandin F(2 alpha) (PGFM) in the maternal circulation. Uterine activity was inhibited within 12 h of beginning meloxicam infusion at both infusion regimes. During meloxicam infusion there were significant decreases in fetal plasma PGE(2), ACTH, and cortisol concentrations, and PGFM concentrations in maternal plasma. In control animals, frequency of uterine contractions, maternal plasma PGFM, fetal plasma PGE(2), ACTH, and cortisol concentrations increased after RU486 administration, and continued to rise during saline infusion until delivery occurred. We conclude that RU486-provoked labor in sheep is associated with activation of fetal HPA function, and that this is attenuated during meloxicam treatment to a level considered compatible with pregnancy maintenance.  相似文献   

9.
We have measured circulating concentrations of gamma 3 Melanocyte Stimulating Hormone (MSH) in fetal sheep between 111 and 145 days gestation. There was no significant effect of gestational age on the fetal plasma concentrations of gamma 3 MSH throughout this period. We have examined the role of gamma-MSH related peptides in the control of fetal adrenal steroidogenesis and found no significant change in fetal plasma cortisol or pregnenolone concentrations during a 60-72 h infusion of saline, gamma 2 MSH or gamma 3 MSH in sheep between 130 and 135 days gestation. Therefore although we have demonstrated the presence of gamma MSH related peptides in fetal sheep plasma during late gestation we have failed to demonstrate a role for gamma 3 or gamma 2 MSH in the changes in fetal steroid concentrations which occur prepartum.  相似文献   

10.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

11.
We tested the hypothesis that fetal cardiovascular responses to hypoxemia change close to full term in relation to the prepartum increase in fetal basal cortisol and investigated, in vivo, the neural and endocrine mechanisms underlying these changes. Fetal heart rate and peripheral hemodynamic responses to 1 h of hypoxemia were studied in 25 chronically instrumented sheep within three narrow gestational age ranges: 125-130 (n = 13), 135-140 (n = 6), and >140 (n = 6) days (full term approximately 145 days). Chemoreflex function and plasma concentrations of vasoconstrictor hormones were measured. Reductions in fetal arterial Po(2) during hypoxemia were similar at all ages. At 125-130 days, hypoxemia elicited transient bradycardia, femoral vasoconstriction, and increases in plasma concentrations of catecholamines, neuropeptide Y (NPY), AVP, ACTH, and cortisol. Close to full term, in association with the prepartum increase in fetal basal cortisol, there was a developmental increase in the magnitude and persistence of fetal bradycardia and in the magnitude of the femoral constrictor response to hypoxemia. The mechanisms mediating these changes close to full term included increases in the gain of chemoreflex function and in the magnitudes of the fetal NPY and AVP responses to hypoxemia. Data combined irrespective of gestational age revealed significant correlations between fetal basal cortisol and fetal bradycardia, femoral resistance, chemoreflex function, and plasma AVP concentrations. The data show that the fetal cardiovascular defense to hypoxemia changes in pattern and magnitude just before full term because of alterations in the gain of the neural and endocrine mechanisms mediating them, in parallel with the prepartum increase in fetal basal cortisol.  相似文献   

12.
13.
In fetal sheep, plasma concentrations of both adrenocorticotropic hormone (ACTH) and cortisol increase at the end of gestation. The increase in fetal plasma cortisol concentration induces placental 17 alpha-hydroxylase and 17, 20 lyase activities and therefore stimulates the placenta to secrete relatively more estrogen and relatively less progesterone. The resultant increase in the estrogen-to-progesterone ratio is thought to increase uterine contractility and initiate labour. We had previously demonstrated that the efficacy of cortisol-induced suppression of ACTH secretion at the end of gestation was reduced. We hypothesized that cortisol-induced stimulation of placental steroidogenesis promoted the secretion of a steroid hormone which reduced negative feedback efficacy, and therefore allowed both ACTH and cortisol secretion to increase simultaneously. Others had proposed that cortisol stimulates the placental secretion of corticotrophin releasing factor, which might also stimulate fetal ACTH secretion. This study was designed to test the hypotheses that cortisol reduces its own feedback efficacy or stimulates CRF secretion. Five pregnant ewes with twin pregnancies were studied after chronic catheterization. One fetus was subjected to infusion of hydrocortisone sodium succinate (10 micrograms/min, iv) and the other to infusion of saline. After 5 and 53 h of infusion, each fetus was subjected to a period of hypotension produced by infusion of sodium nitroprusside. The infusion of hydrocortisone sodium succinate decreased plasma progesterone concentrations in the fetal circulation into which the steroid was infused, and in the maternal circulation. Fetal plasma CRF concentrations were increased on the third day of infusion, the day in which the fetuses went into labour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Exposure to long-term hypoxia (LTH) results in altered cortisol responses in the ovine fetus. The present study was designed to test the hypothesis that LTH alters adrenal responsiveness to fetal hypotension. Pregnant ewes were maintained at high altitude (3,820 meters) from day 30 of gestation. Normoxic control and LTH fetuses were catheterized on day 132 of gestation. In the LTH group, maternal Po(2) was maintained comparable to that observed at altitude ( approximately 60 mmHg) by nitrogen infusion through a tracheal catheter. On day 137, fetuses received a 5-h saline infusion followed by infusion of sodium nitroprusside to reduce fetal arterial pressure by 30-35% for 10 min. The study was repeated on day 139 of gestation with a continuous cortisol infusion (10 microg/min). Hypothalamic and pituitary tissues were collected from additional fetuses for assessment of glucocorticoid receptors. During the saline infusion in response to hypotension, plasma ACTH increased over preinfusion mean values in both groups (P < 0.05). Plasma cortisol concentrations increased in both groups concomitant with increased ACTH secretion. However, peak values in the LTH fetuses were significantly higher compared with controls (P < 0.05). During the cortisol infusion, the ACTH response was eliminated in both groups, with ACTH levels significantly lower in the LTH group (P < 0.05). Glucocorticoid receptor binding was not different between groups. These results demonstrate an enhanced cortisol response to hypotension in LTH fetuses that does not appear to be the result of an increase in negative feedback sensitivity of the hypothalamic-pituitary-adrenal axis.  相似文献   

15.
The rise in cortisol in fetal sheep during late pregnancy has been related to increased responsiveness of the adrenal to ACTH. Most reports have suggested that plasma ACTH concentrations rise coincident with or after the prepartum increase in cortisol. To reexamine the relationship of cortisol with basal immunoreactive ACTH (IR-ACTH) throughout the last 40 days of pregnancy and to determine changes in fetal pituitary responsiveness during this time, we measured basal and synthetic ovine corticotrophin-releasing factor (oCRF) (10 ng-10 micrograms) induced rises in ACTH and cortisol in fetal sheep at days 110-115, 125-130, and 135-140 of pregnancy. The fetuses were catheterized on day 105-120 and entered spontaneous labour at greater than 140 days. Basal IR-ACTH (picograms per millilitre +/- SEM) rose from 16.7 +/- 2.9 pg/mL at day 110-115 to 34.8 +/- 8.7 pg/mL at day 141-145. There was a significant effect of time on basal ACTH concentrations with a mean increase of approximately 5 pg ACTH per millilitre of plasma per 5-day sampling interval. Plasma cortisol changed gradually between day 110 and 125 of gestation and then more rapidly to term. At day 110-115 of gestation there was no significant change in plasma ACTH after 10 or 100 ng oCRF, but there was a significant increase in ACTH after 1 microgram of oCRF. Plasma cortisol did not change after any CRF injection. The change in IR-ACTH after oCRF at day 125-130 of gestation was significantly greater than that at day 110-115. Plasma cortisol concentrations were elevated following 1- and 10-micrograms injections of oCRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The present study examined the effects of repeated adrenocorticotropic hormone (ACTH) administrations to sows during late gestation on hypothalamic-pituitary-adrenocortical (HPA) axis and brain neurotransmitter systems in their fetuses. ACTH (100 IU per animal, Synacthen Depot, n=6) or saline (n=5) was administered intramuscularly to sows every 2nd day from gestational day (GD) 85 to GD 101. Blood samples were taken from sows repeatedly within 12h after ACTH application on GD 85 and GD 101. On GD 105, fetuses were recovered under general anaesthesia for the collection of blood and brain samples. Plasma cortisol concentrations in sows increased significantly within 2h after ACTH application and returned to control levels after 10h post-application, showing a similar response at the beginning and at the end of the 16-day stimulation period. On GD 101, a significant increase of plasma glucose and insulin concentrations was found in sows after administration of ACTH and after a following feeding time. Number and body weight of fetuses were not affected by the maternal ACTH treatment. Cortisol concentrations in the umbilical vein were significantly decreased in fetuses from ACTH sows and a similar trend was observed in the umbilical artery and in the vena cava cranialis. Glucocorticoid receptor (GR) binding in hippocampus and hypothalamus did not differ between treatments. However, in hippocampus, serotonergic activity was increased in fetuses from ACTH-treated mothers as shown by significantly elevated 5-hydroxytryptamine (5-HT) levels. In conclusion, repeated administrations of ACTH during late gestation resulted in a reproducible cortisol response of sows and reduced cortisol concentrations in the fetal umbilical vein after the treatment period. Although the number of sows used in this experiment was low and differences between treatments were limited these findings indicate that excessive glucocorticoid exposure during gestation alters serotonergic activity in hippocampus of fetuses and may affect the emotional reactivity later in life.  相似文献   

18.
PGE2 (2 micrograms/min) has been infused for 1h into the fetal jugular vein of 8 chronically catheterized fetuses on 13 occasions from 112 to 138 days gestation. Infusion of ethanol vehicle alone was conducted in fetuses from 111-139 days gestation. PGE2 administration produced a significant increase in fetal plasma cortisol after 30 min. No significant change was observed in fetal plasma prolactin concentration. Fetal plasma ACTH concentration was significantly elevated above resting concentration after 30 min. of PGE2 infusion. Metabolic clearance rate of PGE2 was 860 ml/min or 350 ml/kg/min. Intrauterine pressure was not changes during the infusion at any gestational age.  相似文献   

19.
During pregnancy, plasma ACTH and cortisol are chronically increased; this appears to occur through a reset of hypothalamo-pituitary-adrenal (HPA) activity. We have hypothesized that differences in mineralocorticoid receptor activity in pregnancy may alter feedback inhibition of the HPA axis. We tested the effect of MR antagonism in pregnant and nonpregnant ewes infused for 4 h with saline or the MR antagonist canrenoate. Pregnancy significantly increased plasma ACTH, cortisol, angiotensin II, and aldosterone. Infusion of canrenoate increased plasma ACTH, cortisol, and aldosterone in both pregnant and nonpregnant ewes; however, the temporal pattern of these responses differed between these two reproductive states. In nonpregnant ewes, plasma ACTH and cortisol transiently increased at 1 h of infusion, whereas in pregnant ewes the levels gradually increased and were significantly elevated from 2 to 4 h of infusion. MR blockade increased plasma aldosterone from 2 to 4 h in the pregnant ewes but only at 4 h in the nonpregnant ewes. In both pregnant and nonpregnant ewes, the increase in plasma aldosterone was significantly related to the timing and magnitude of the increase in plasma potassium. The results indicate a differential effect of MR activity in pregnant and nonpregnant ewes and suggest that the slow changes in ACTH, cortisol, and aldosterone are likely to be related to blockade of MR effects in the kidney rather than to effects of MR blockade in hippocampus or hypothalamus.  相似文献   

20.
Maternal administration of androstenedione produces a sustained fall in maternal plasma adrenocorticotropic hormone (ACTH) concentrations in the pregnant nonhuman primate. We hypothesize a negative feedback influence on the maternal hypothalamo-pituitary-adrenal (HPA) axis by androgens in primates. This may reflect an important maternal adaptation during pregnancy in primates preventing premature induction of labor by maternal stress. However, androstenedione is precursor for placental estradiol-17beta synthesis, and infusion of androstenedione into pregnant primates elevates maternal plasma estradiol-17beta to term concentrations. Thus, it could be argued that 1) the effects attributed to androstenedione on the maternal HPA axis are mediated by estrogen rather than by androgen and 2) the negative influence of androgens may be on placental ACTH rather than, or in addition to, pituitary ACTH. To discriminate between androgenic and estrogenic effects of androstenedione on pituitary and/or placental ACTH function in primates we measured plasma ACTH, cortisol, and dehydroepiandrosterone sulfate (DHEAS) concentrations in nonpregnant baboons after treatment with either androstenedione or estradiol-17beta. Nine female baboons were studied between 14 and 22 days postpartum prior to estrous cycling. After 2 days of baseline, a continuous i.v. infusion of androstenedione (1.5 mg/kg per h in 10% intralipid, IL) was started at 0900 h and maintained for 9 days in 3 baboons. A similar protocol was carried out in another 3 baboons that received a continuous i.v. infusion of estradiol-17beta (10 microg/kg per h in 10% IL) instead of androstenedione. Three additional baboons received continuous i.v. IL vehicle alone and served as controls. Arterial blood samples (0.5 ml) for measurement of plasma hormones were taken during baseline and after 1, 3, 5, 7, and 9 days of infusion. Baseline plasma ACTH, DHEAS, and cortisol concentrations were similar among all groups. Plasma ACTH did not change during IL, increased following estradiol-17beta, and fell during androstenedione treatment. Accordingly, plasma cortisol and DHEAS concentrations were also unaltered by IL, and both steroids increased during estradiol-17beta treatment. In contrast, plasma cortisol and DHEAS remained unaltered from baseline during androstenedione treatment, despite the fall in plasma ACTH measured at this time. These data in the nonpregnant baboon 1) are consistent with negative feedback on pituitary ACTH by androgens and 2) demonstrate a positive influence on pituitary-adrenal function by estrogen in primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号