首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The ;xanthine oxidase' activity of rat liver supernatant, most of which behaves as an NAD(+)-dependent dehydrogenase (type D) can be rapidly converted into an oxidase (type O) by thiol reagents such as tetraethylthiuram disulphide, copper sulphate, 5,5'-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercuribenzoate. Treatment with copper sulphate, if prolonged, leads to almost complete inactivation of the enzyme. The effect of these reagents is prevented by dithioerythritol, and in all cases but that of N-ethylmaleimide is reversed by the same thiol. 2. Dithioerythritol prevents and reverses the conversion of xanthine oxidase from type D into type O brought about by storage of rat liver supernatant at -20 degrees C, preincubation under anaerobic conditions, treatment with carbon or with diethyl ether, and reverses, but does not prevent, the conversion obtained by preincubation of the whole liver homogenate. 3. Conversion of the enzyme from type D into type O is effected by preincubation of rat liver supernatant with the sedimentable fraction from rat liver but not from chick or pigeon liver. The xanthine dehydrogenase activity of chick liver supernatant is not changed into an oxidase by preincubation with the sedimentable fraction from rat liver. 4. The enzyme activity of rat liver supernatant is converted from type D into type O during purification of the enzyme: the purified enzyme can be reconverted into type D by dithioerythritol. 5. The enzyme appears as an oxidase in the supernatant of rat heart, intestine, spleen, pancreas, lung and kidney. The enzyme of all organs but intestine can be converted into a dehydrogenase by dithioerythritol.  相似文献   

2.
The biochemical strategy of colon tumor was investigated by comparing the enzymic programs of glycolysis, pentose phosphate production and purine and pyrimidine biosynthesis and degradation in liver, normal colon mucosa and transplantable colon adenocarcinoma in the mouse. In normal colon mucosa the carbohydrate and pentose phosphate enzymes were 2- to 9-fold higher in specific activity than those in liver. Among the enzymes of CTP synthesis, CTP synthetase was the rate-limiting one in both liver and colon. In colon tumor CTP synthetase, OMP decarboxylase, uracil phosphoribosyltransferase and thymidine kinase activities increased to 927, 863, 597 and 514% of activities of normal colon. In contrast, the activity of the catabolic enzymes, dihydrothymine dehydrogenase and uridine phosphorylase, decreased to 51 and 25%. The ratios of activities of uridine kinase/uridine phosphorylase and thymidine kinase/dihydrothymine dehydrogenase were elevated 6- and 10-fold. The activity of the key purine synthetic enzyme, glutamine PRPP amidotransferase, increased 7-fold and the opposing rate-limiting enzyme of purine catabolism, xanthine oxidase, decreased to 7%. The ratio of amidotransferase/xanthine oxidase was elevated to 8, 150%. Activities of glucose-6-phosphate dehydrogenase and transaldolase did not increase, but that of pyruvate kinase was elevated to 154%. Similar enzymic programs were observed in a transplantable adenocarcinoma of the colon in the rat. The alterations in gene expression in colon tumor manifested in an integrated pattern of enzymic imbalance indicate the display of a program, a segment of which is shared with rat and human liver and kidney tumors. These alterations in gene expression should confer selective advantages to colon tumor cells. The striking increases in the activities of CTP synthetase, OMP decarboxylase, glutamine PRPP amidotransferase and thymidine kinase mark out these enzymes as potentially sensitive targets for combination chemotherapy by specific inhibitors of these enzyme activities.  相似文献   

3.
The xanthine-oxidizing enzyme of rat liver has been purified as an NAD+-dependent dehydrogenase (type D) and as the O2-dependent oxidase (type O). The purified D and O variants are nearly homogenous as judged by polyacrylamide discontinuous gel electrophoresis and are indistinguishable on sodium dodecyl sulfate-urea gels. The absorption spectrum of the type D enzyme is indistinguishable from that of the type O enzyme and closely resembles the spectra of xanthine-oxidizing enzymes from other sources. The types D and O enzymes have essentially the same cofactor composition. Oxidation of xanthine by type D is stimulated by NAD+ with concomitant NADH formation. Type D is able to utilize NADH as well as xanthine as electron donor to various acceptors, in contrast to type O that is unable to oxidize NADH. Arsenite, cyanide and methanol completely abolish xanthine oxidation by the type D enzyme while affecting the activities with NADH to varying extents. In these respects rat liver xanthine dehydrogenase closely resembles chicken liver xanthine dehydrogenase. However, in contrast to the avian enzyme, the purified rat liver enzyme is unstable as a dehydrogenase and is gradually converted to an oxidase. This conversion is accompanied by an increase in the aerobic xanthine → cytochrome c activity. The native type D enzyme in rat liver extracts is precipitable with antibody prepared against purified type O. The Km for xanthine is not significantly different for the two forms.  相似文献   

4.
SH-reagents: tetraethylthiuram disulphide (TETD), 5,5'-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (p-ChMB), N-ethylmaleimide (NEM) were studied for their effect on the aldehyde dehydrogenase activity of mitochondrion (isoenzymes I and II) and microsome (isoenzyme II) fractions of the rat liver. TETD is established to inhibit isoenzyme I and isoenzyme II activity of mitochondrial aldehyde dehydrogenase by 100 and 50%, respectively, and the microsomal enzyme activity by 20%. DTNB and NEM inhibit 30-50% of the activity in two isoforms of mitochondrial aldehyde dehydrogenase having no effect on the enzymic activity in microsomes; p-ChMB inhibits completely the activity of the enzyme under study both in the mitochondrial and microsomal fractions. A conclusion is drawn that SH-groups are very essential for manifestation of the catalytic activity in the NAD+-dependent aldehyde dehydrogenase from mitochondrial and microsomal fractions.  相似文献   

5.
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.  相似文献   

6.
Localization of the activity of both the dehydrogenase and oxidase forms of xanthine oxidoreductase were studied in biopsy and postmortem specimens of various human tissues with a recently developed histochemical method using unfixed cryostat sections, poly-(vinyl alcohol) as tissue stabilizator, 1-methoxyphenazine methosulphate as intermediate electron acceptor and Tetranitro BT as final electron acceptor. High enzyme activity was found only in the liver and jejunum, whereas all the other organs studied showed no activity. In the liver, enzyme activity was found in sinusoidal cells and both in periportal and pericentral hepatocytes. In the jejunum, enterocytes and goblet cells, as well as the lamina propria beneath the basement membrane showed activity. The oxidase activity and total dehydrogenase and oxidase activity of xanthine oxidoreductase, as determined biochemically, were found in the liver and jejunum, but not in the kidney and spleen. This confirmed the histochemical results for these organs. Autolytic rat livers several hours after death were studied to exclude artefacts due to postmortem changes in the human material. These showed loss of activity both histochemically and biochemically. However, the percentage activity of xanthine oxidase did not change significantly in these livers compared with controls. The findings are discussed with respect to the possible function of the enzyme. Furthermore, the low conversion rate of xanthine dehydrogenase into xanthine oxidase during autolysis is discussed in relation to ischemia-reperfusion injury.  相似文献   

7.
The present study tested the hypothesis that calpain is responsible for the limited proteolytic conversion of xanthine dehydrogenase (XD) to xanthine oxidase (XO). We compared the effects of various proteases on the activity and molecular weight of a purified preparation of xanthine dehydrogenase from rat liver. In agreement with previous reports, trypsin treatment produced a complete conversion of XD to XO accompanied by a limited proteolysis of XDH from an Mr of 140 kD to an Mr of 90 kD. Treatment with calpain I or calpain II did not produce a conversion from XD to XO nor did it result in partial proteolysis of the enzyme. Similarly, trypsin treatment partially degraded a reversibly oxidized form of xanthine dehydrogenase while calpain I or calpain II were ineffective. The possibility that an endogenous inhibitor prevented the proteolysis of XDH by calpain I or II was excluded by verifying that brain spectrin, a known calpain substrate, was degraded under the same incubation conditions. The results indicate that calpain is not likely to be responsible for the in vivo conversion of XD to XO under pathological conditions.  相似文献   

8.
BACKGROUND/AIMS: Homovanillamine is a biogenic amine that it is catalyzed to homovanillyl aldehyde by monoamine oxidase A and B, but the oxidation of its aldehyde to the acid derivative is usually ascribed to aldehyde dehydrogenase and a potential contribution of aldehyde oxidase and xanthine oxidase is usually ignored. METHODS: The present investigation examines the metabolism of homovanillamine to its acid derivative by concurrent incubation with monoamine oxidase and aldehyde oxidase. In addition, the metabolism of homovanillamine in freshly prepared and cryopreserved liver slices is examined and the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activity by using specific inhibitors of each oxidizing enzyme is compared. RESULTS: Homovanillamine was rapidly converted mainly to homovanillic acid when incubated with both momoamine oxidase and aldehyde oxidase. Homovanillic acid was also the main metabolite in the incubations of homovanillamine with freshly prepared or cryopreserved liver slices, via the intermediate homovanillyl aldehyde. The acid formation was 70-75 % inhibited by disulfiram (specific inhibitor of aldehyde dehydrogenase), whereas isovanillin (specific inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent (50-55 %) and allopurinol (specific inhibitor of xanthine oxidase) had almost no effect. CONCLUSIONS: Homovanillamine is rapidly oxidized to its acid, via homovanillyl aldehyde, by aldehyde dehydrogenase and aldehyde oxidase with little or no contribution from xanthine oxidase.  相似文献   

9.
1. 3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) activities in sheep kidney cortex, rumen epithelium, skeletal muscle, brain, heart and liver were 177, 41, 38, 33, 27 and 17μmol/h per g of tissue respectively, and in rat liver and kidney cortex the values were 1150 and 170 respectively. 2. In sheep liver and kidney cortex the 3-hydroxybutyrate dehydrogenase was located predominantly in the cytosol fractions. In contrast, the enzyme was found in the mitochondria in rat liver and kidney cortex. 3. Laurate, myristate, palmitate and stearate were not oxidized by sheep liver mitochondria, whereas the l-carnitine esters were oxidized at appreciable rates. The free acids were readily oxidized by rat liver mitochondria. 4. During oxidation of palmitoyl-l-carnitine by sheep liver mitochondria, acetoacetate production accounted for 63% of the oxygen uptake. No 3-hydroxybutyrate was formed, even after 10min anaerobic incubation, except when sheep liver cytosol was added. With rat liver mitochondria, half of the preformed acetoacetate was converted into 3-hydroxybutyrate after anaerobic incubation. 5. Measurement of ketone bodies by using specific enzymic methods (Williamson, Mellanby & Krebs, 1962) showed that blood of normal sheep and cattle has a high [3-hydroxybutyrate]/[acetoacetate] ratio, in contrast with that of non-ruminants (rats and pigeons). This ratio in the blood of lambs was similar to that of non-ruminants. The ratio in sheep blood decreased on starvation and rose again on re-feeding. 6. The physiological implications of the low activity of 3-hydroxybutyrate dehydrogenase in sheep liver and the fact that it is found in the cytoplasm in sheep liver and kidney cortex are discussed.  相似文献   

10.
BACKGROUND/AIMS: The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. METHODS: Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. RESULTS: Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. CONCLUSIONS: In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.  相似文献   

11.
The present study describes the (xanthine:NAD+ oxidoreductase, EC 1.2.1.37) synthesis and degradation of chick liver xanthine dehydrogenase in vivo and in organ cultures. The results indicate that control of xanthine dehydrogenase activity is mediated by changes in the rate of enzyme synthesis, but that degradation rates are unaffected. The results also suggest that xanthine dehydrogenase synthesis occurs through a previously unreported intermediate. Detected in cultures of liver tissue, this intermediate apparently is not converted into an active enzyme. A model of synthesis and degradation for xanthine dehydrogenase proposes that the synthesis of the enzyme is proportional to messenger RNA and includes an inactive enzyme precursor and a second inactive intermediate prior to degradation. Integrated mathematical solutions describing the concentration of intermediates as a function of time can be found explicitly for simple models. The appendix to this paper extrapolates solutions for one-, two- and three-step models to generate a mathematical solution for an 'n'-step model containing 'n' intermediates. The rate constants in the solutions can be found experimentally.  相似文献   

12.
Affinity labeling of the NAD-binding site of chicken liver xanthine dehydrogenase by 5'-p-fluorosulfonylbenzoyladenosine (5'-FSBA) caused spectral perturbation around 450 nm in the same way as NAD. Reductive titration with xanthine of native xanthine dehydrogenase in the presence of NAD showed that redox potentials of the FAD/FADH. and FADH./FADH2 couples were shifted positive by NAD binding to the enzyme. The redox potentials of these couples were also shifted to some extent by modification of the NAD-binding site with 5'-FSBA. These results provide further evidence that binding of NAD to chicken liver xanthine dehydrogenase modulates the reactivity of the enzyme by shifting the redox potential of FAD. Proteolytic cleavage of the [14C]-5'-FSBA-modified enzyme yielded several domain peptides, only one of which contained radioactivity. The isolated radioactive peptide was further digested with Staphylococcus aureus protease and the 14C-labeled peptide was purified by two steps of high performance liquid chromatography. The amino acid sequence of the peptide was determined, and a reactive tyrosine residue was identified.  相似文献   

13.
The inhibition of mitochondrial (pI 5) horse liver aldehyde dehydrogenase by disulfiram (tetraethylthiuram disulphide) was investigated to determine if the drug was an active-site-directed inhibitor. Stoichiometry of inhibition was determined by using an analogue, [35S]tetramethylthiuram disulphide. A 50% loss of the dehydrogenase activity was observed when only one site per tetrameric enzyme was modified, and complete inactivation was not obtained even after seven sites per tetramer were modified. Modification of only two sites accounted for a loss of 75% of the initial catalytic activity. The number of functioning active sites per tetrameric enzyme, as determined by the magnitude of the pre-steady-state burst of NADH formation, did not decrease until approx. 75% of the catalytic activity was lost. These data indicate that disulfiram does not modify the essential nucleophilic amino acid at the active site of the enzyme. The data support an inactivation mechanism involving the formation of a mixed disulphide with a non-essential cysteine residue, resulting in a lowered specific activity of the enzyme.  相似文献   

14.
E V Evdokimov 《Biofizika》1986,31(2):200-203
Macroscopic fluctuations of liver alcohol dehydrogenase enzymic activity in complex reaction consisting in ethanol oxidation and butyraldehyde reduction were studied. It was found that maximal fluctuation amplitude was observed when the rates of both reactions were equal. Such dependence indicates connection between macroscopic fluctuations in alcohol dehydrogenase reaction and oscillations of relative affinity of the enzyme to oxidized and reduced coenzyme forms.  相似文献   

15.
Sheep liver mitochondrial aldehyde dehydrogenase reacts with 2,2'-dithiodipyridine and 4,4'-dithiodipyridine in a two-step process: an initial rapid labelling reaction is followed by slow displacement of the thiopyridone moiety. With the 4,4'-isomer the first step results in an activated form of the enzyme, which then loses activity simultaneously with loss of the label (as has been shown to occur with the cytoplasmic enzyme). With 2,2'-dithiodipyridine, however, neither of the two steps of the reaction has any effect on the enzymic activity, showing that the mitochondrial enzyme possesses two cysteine residues that must be more accessible or reactive (to this reagent at least) than the postulated catalytically essential residue. The symmetrical reagent 5,5'-dithiobis-(1-methyltetrazole) activates mitochondrial aldehyde dehydrogenase approximately 4-fold, whereas the smaller related compound methyl l-methyltetrazol-5-yl disulphide is a potent inactivator. These results support the involvement of mixed methyl disulphides in causing unpleasant physiological responses to ethanol after the ingestion of certain antibiotics.  相似文献   

16.
A specific dehydrogenase, different from nicotinic acid hydroxylase, was induced during growth of Eubacterium barkeri on xanthine. The protein designated as xanthine dehydrogenase was enriched 39-fold to apparent homogeneity using a three-step purification scheme. It exhibited an NADP-dependent specific activity of 164 micromol xanthine oxidized per min and per mg of protein. In addition it showed an NADPH-dependent oxidase and diaphorase activity. A molecular mass of 530 kDa was determined for the native enzyme and SDS/PAGE revealed three types of subunits with molecular masses of 17.5, 30 and 81 kDa indicating a dodecameric native structure. Molybdopterin was identified as the molybdenum-complexing cofactor using activity reconstitution experiments and fluorescence measurements after KI/I2 oxidation. The molecular mass of the cofactor indicated that it is of the dinucleotide type. The enzyme contained iron, acid-labile sulfur, molybdenum, tungsten, selenium and FAD at molar ratios of 17.5, 18.4, 2.3, 1.1, 0.95 and 2.8 per mol of native enzyme. Xanthine dehydrogenase was inactivated upon incubation with arsenite, cyanide and different purine analogs. Reconstitution experiments of xanthine dehydrogenase activity by addition of selenide and selenite performed with cyanide-inactivated enzyme and with chloramphenicol-treated cells, respectively, indicated that selenium is not attached to the protein in a covalently bound form such as selenocysteine.  相似文献   

17.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

18.
The localization of xanthine oxidoreductase activity was investigated in unfixed cryostat sections of various rat tissues by an enzyme histochemical method which specifically demonstrates both the dehydrogenase and oxidase forms of xanthine oxidoreductase. High activity was found in epithelial cells from skin, vagina, uterus, penis, liver, oral and nasal cavities, tongue, esophagus, fore-stomach and small intestine. In addition activity was demonstrated in sinusoidal cells of liver and adrenal cortex, endothelial cells in various organs and connective tissue fibroblasts. Xanthine oxidoreductase produces urate which is a scavenger of oxygen-derived radicals. Because the enzyme is found in epithelial and endothelial cells which are subject to relatively high oxidant stress, it is postulated that in these cells xanthine oxidoreductase is involved in the antioxidant enzyme defense system. In addition, a possible role for the enzyme in proliferation and differentiation processes is discussed.  相似文献   

19.
Considerable evidence suggests that the release of iron from ferritin is a reductive process. A role in this process has been proposed for two hepatic enzymes, namely xanthine oxidoreductase and an NADH oxidoreductase. The abilities of xanthine and NADH to serve as a source of reducing power for the enzyme-mediated release of ferritin iron (ferrireductase activity) were compared with turkey liver and rat liver homogenates. The maximal velocity (Vmax.) for the reaction with NADH was 50 times greater than with xanthine; however, the substrate concentration required to achieve half-maximal velocity (Km) was 1000 times less with xanthine than with NADH. NADPH could be substituted for NADH with little loss in activity. Dicoumarol did not inhibit the reaction with NADH or NADPH, demonstrating that the ferrireductase activity with those substrates was not the result of the liver enzyme 'DT-diaphorase' [NAD(P)H dehydrogenase (quinone)]. A flavin nucleotide was required for ferrireductase activity with rat and turkey liver cytosol when xanthine, NADH or NADPH was used as the reducing substrate. FMN yielded twice the activity with NADH or NADPH, whereas FAD was twice as effective with xanthine as substrate. Kinetic comparisons, differences in lability and partial chromatographic resolution of the ferrireductase activities with the two types of reducing substrates strongly indicate that the ferrireductase activities with xanthine and NADH are catalysed by separate enzyme systems contained in liver cytosol. Complete inhibition by allopurinol of the ferrireductase activity endogenous to undialysed liver cytosol preparations and the ability of xanthine to restore equivalent activity to dialysed preparations indicate that the source of reducing power for the endogenous activity is xanthine. These studies suggest that xanthine, NADH or NADPH can serve as a source of reducing power for the enzyme-mediated reduction of ferritin iron, with a flavin nucleotide serving as the shuttle of electrons from the enzymes to the ferritin iron.  相似文献   

20.
The conversion of xanthine dehydrogenase to a free radical producing oxidase is an important component of oxygen-mediated tissue injury. Current assays for these enzymes are of limited sensitivity, making it difficult to analyze activities in organ biopsies or cultured cells. The xanthine oxidase-catalyzed conversion of pterin (2-amino-4-hydroxypteridine) to isoxanthopterin provides the basis for a fluorometric assay which is 100-500 times more sensitive than the traditional spectrophotometric assay of urate formation from xanthine. Enzyme activity as low as 0.1 pmol min-1 ml-1 can be measured with the fluorometric pterin assay. Xanthine oxidase is assayed in the presence of pterin only, while combined xanthine dehydrogenase plus oxidase activity is determined with methylene blue which replaces NAD+ as an electron acceptor. The relative proportions and specific activities of xanthine oxidase and dehydrogenase determined by the fluorometric pterin assay are comparable with the spectrophotometric measurement of activities present in rat liver, intestine, kidney, and plasma. The assay has been successfully applied to brain, human kidney, and cultured mammalian cells, where xanthine dehydrogenase and oxidase activities are too low to detect spectrophotometrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号