首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major factor in the emergence of antibiotic resistance is the existence of enzymes that chemically modify common antibiotics. The genes for these enzymes are commonly carried on mobile genetic elements, facilitating their spread. One such class of enzymes is the aminoglycoside phosphotransferase (APH) family, which uses ATP-mediated phosphate transfer to chemically modify and inactivate aminoglycoside antibiotics such as streptomycin and kanamycin. As part of a program to define the molecular basis for aminoglycoside recognition and inactivation by such enzymes, we have determined the high resolution (2.1A) crystal structure of aminoglycoside-3'-phosphotransferase-IIa (APH(3')-IIa) in complex with kanamycin. The structure was solved by molecular replacement using multiple models derived from the related aminoglycoside-3'-phosphotransferase-III enzyme (APH(3')-III), and refined to an R factor of 0.206 (R(free) 0.238). The bound kanamycin molecule is very well defined and occupies a highly negatively charged cleft formed by the C-terminal domain of the enzyme. Adjacent to this is the binding site for ATP, which can be modeled on the basis of nucleotide complexes of APH(3')-III; only one change is apparent with a loop, residues 28-34, in a position where it could fold over an incoming nucleotide. The three rings of the kanamycin occupy distinct sub-pockets in which a highly acidic loop, residues 151-166, and the C-terminal residues 260-264 play important parts in recognition. The A ring, the site of phosphoryl transfer, is adjacent to the catalytic base Asp190. These results give new information on the basis of aminoglycoside recognition, and on the relationship between this phosphotransferase family and the protein kinases.  相似文献   

2.
Chimeric genes as dominant selectable markers in plant cells   总被引:41,自引:15,他引:26       下载免费PDF全文
Opine synthases are enzymes produced in dicotyledonous plants as the result of a natural gene transfer phenomenon. Agrobacteria contain Ti plasmids that direct the transfer, stable integration and expression of a number of genes in plants, including the genes coding for octopine or nopaline synthase. This fact was used as the basis for the construction of a number of chimeric genes combining the 5' upstream promoter sequences and most of the untranslated leader sequence of the nopaline synthase (nos) gene with the coding sequence of two bacterial genes: the aminoglycoside phosphotransferase (APH(3')II) gene of Tn5 and the methotrexate-insensitive dihydrofolate reductase (DHFR MtxR) of the R67 plasmid. The APH(3')II enzyme inactivates a number of aminoglycoside antibiotics such as kanamycin, neomycin and G418. Kanamycin, G418 and methotrexate are very toxic to plants. The chimeric NOS-APH(3')II gene, when transferred to tobacco cells using the Ti plasmid as a gene vector, was expressed and conferred resistance to kanamycin to the plant cells. Kanamycin-resistant tobacco cells were shown to contain a typical APH(3')II phosphorylase activity. This chimeric gene can be used as a potent dominant selectable marker in plants. Similar results were also obtained with a NOS-DHFR MtxR gene. Our results demonstrate that foreign genes are not only transferred but are also functionally expressed when the appropriate constructions are made using promoters known to be active in plant cells.  相似文献   

3.
Aminoglycoside 3'-phosphotransferases (APH(3')s) are common bacterial resistance enzymes to aminoglycoside antibiotics. These enzymes transfer the gamma-phosphoryl group of ATP to the 3'-hydroxyl of the antibiotics, whereby the biological activity of the drugs is lost. Pre-steady-state and steady-state kinetics with two of these enzymes from Gram-negative bacteria, APH(3')-Ia and APH(3')-IIa, were performed. It is demonstrated that these enzymes in both ternary and binary complexes facilitate an ATP hydrolase activity (ATPase), which is competitive with the transfer of phosphate to the antibiotics. Because these enzymes are expressed constitutively in resistant bacteria, the turnover of ATP is continuous during the lifetime of the organism both in the absence and the presence of aminoglycosides. Concentrations of the enzyme in vivo were determined, and it was estimated that in a single generation of bacterial growth there exists the potential that this activity would consume as much as severalfold of the total existing ATP. Studies with bacteria harboring the aph(3')-Ia gene revealed that bacteria are able to absorb the cost of this ATP turnover, as ATP is recycled. However, the cost burden of this adventitious activity manifests a selection pressure against maintenance of the plasmids that harbor the aph(3')-Ia gene, such that approximately 50% of the plasmid is lost in 1500 bacterial generations in the absence of antibiotics. The implication is that, in the absence of selection, bacteria harboring an enzyme that catalyzes the consumption of key metabolites could experience the loss of the plasmid that encodes for the given enzyme.  相似文献   

4.
5.
We examined the aminoglycoside inactivation enzymes in Pseudomonas aeruginosa strains, seven clinical isolates and seven laboratory strains without plasmids. All strains were found to possess the enzyme aminoglycoside 3'-phosphotransferase II [APH(3')-II]. We isolated an APH(3')-II-deficient mutant from a PAO strain by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. By plasmid (FP5 or R68.45)-mediated conjugation, we determined the locus of the gene specifying the APH(3')-II between trp-6 and pro-82 on the PAO chromosome and designated this gene aphA. It was concluded that the intrinsic resistance of P. aeruginosa to kanamycins, neomycins, paromomycins, ribostamycin, and butirosins was due to this newly determined gene.  相似文献   

6.
The investigation was focused on 60 strains of Gr- microorganisms isolated from urocultures and resistant to gentamicin and/or amikacin. Resistance evaluation by the method of Bauer--Kirby with respect to 7 aminoglycoside aminocyclitols (streptomycin, spectinomycin, kanamycin, gentamicin, tobramycin, sisomicin, netilmicin and amikacin) as well as determination of minimal inhibitory concentrations revealed that the most frequently occurring resistance phenotype was streptomycin kanamycin gentamicin sisomicin tobramycin (91.66% tested microorganisms). Approximately 50% of all tested organisms were found to be susceptible to netilmicin. Assays for aminoglycoside-modifying enzymes using 32P ATP and 14C ATP confirmed APH(3')(5")--I and AAD(2") as resistance determinants regarding 4,6-substituted deoxystreptamines. Acetyltransferase determination by the method of Shannon and Phillips and that by van de Klundert et al. most frequently assumes for the formation of AAC(3)-II and AAC(3)-I. Assays utilizing radioactive labels in amikacin-resistant strains determine the enzymes APH(3') and AAD(2")-II.  相似文献   

7.
The aminoglycoside phosphotransferases (APHs) are widely distributed among pathogenic bacteria and are employed to covalently modify, and thereby detoxify, the clinically relevant aminoglycoside antibiotics. The crystal structure for one of these aminoglycoside kinases, APH(3')-IIIa, has been determined in complex with ADP and analysis of the electrostatic surface potential indicates that there is a large anionic depression present adjacent to the terminal phosphate group of the nucleotide. This region also includes a conserved COOH-terminal alpha-helix that contains the COOH-terminal residue Phe(264). We report here mutagenesis and computer modeling studies aimed at examining the mode of aminoglycoside binding to APH(3')-IIIa. Specifically, seven site mutants were studied, five from the COOH-terminal helix (Asp(261), Glu(262), and Phe(264)), and two additional residues that line the wall of the anionic depression (Tyr(55) and Arg(211)). Using a molecular modeling approach, six ternary complexes of APH(3')-IIIa.ATP with the antibiotics, kanamycin, amikacin, butirosin, and ribostamycin were independently constructed and these agree well with the mutagenesis data. The results obtained show that the COOH-terminal carboxylate of Phe(264) is critical for proper function of the enzyme. Furthermore, these studies demonstrate that there exists multiple binding modes for the aminoglycosides, which provides a molecular basis for the broad substrate- and regiospecificity observed for this enzyme.  相似文献   

8.
Aminoglycoside 3'-phosphotransferases [APH(3')s] are important bacterial resistance enzymes for aminoglycoside antibiotics. These enzymes phosphorylate the 3'-hydroxyl of these antibiotics, a reaction that inactivates the drug. A series of experiments were carried out to shed light on the details of the turnover chemistry by these enzymes. Quench-flow pre-steady-state kinetic analyses of the reactions of Gram-negative APH(3') types Ia and IIa with kanamycin A, neamine, and their respective difluorinated analogues 4'-deoxy-4',4'-difluorokanamycin A and 4'-deoxy-4',4'-difluoroneamine were carried out, in conjunction with measurements of thio effect and viscosity studies. The fluorinated analogues were shown to be severely impaired as substrates for these enzymes. The magnitude of the effect of the impairment of the fluorinated substrates was in the same range as when the D198A mutant APH(3')-Ia was studied with nonfluorinated substrates. Residue 198 is the proposed active site base that promotes the aminoglycoside hydroxyl for phosphorylation. These findings collectively argue that the Gram-negative APH(3')s show significant nucleophilic participation in the transition state for the phosphate transfer reaction.  相似文献   

9.
The major mechanism of resistance to aminoglycosides in clinical bacterial isolates is the covalent modification of these antibiotics by enzymes produced by the bacteria. Aminoglycoside 2'-Ib phosphotransferase [APH(2')-Ib] produces resistance to several clinically important aminoglycosides in both Gram-positive and Gram-negative bacteria. Nuclear magnetic resonance analysis of the product of kanamycin A phosphorylation revealed that modification occurs at the 2'-hydroxyl of the aminoglycoside. APH(2')-Ib phosphorylates 4,6-disubstituted aminoglycosides with kcat/Km values of 10(5)-10(7) M-1 s-1, while 4,5-disubstituted antibiotics are not substrates for the enzyme. Initial velocity studies demonstrate that APH(2')-Ib operates by a sequential mechanism. Product and dead-end inhibition patterns indicate that binding of aminoglycoside antibiotic and ATP occurs in a random manner. These data, together with the results of solvent isotope and viscosity effect studies, demonstrate that APH(2')-Ib follows the random Bi-Bi kinetic mechanism and substrate binding and/or product release could limit the rate of reaction.  相似文献   

10.
Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2'-phosphotransferase IIIa (APH(2')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.  相似文献   

11.
Abstract Four plasmids were constructed by associating Escherichia coli and yeast selection markers and replication origins to a structural gene coding for aminoglycoside phosphotransferase (APH(3')) controlled by different flanking sequences. We used the two bacterial genes of Tn5 (APH(3')II) and Tn903 (APH(3')I) as such and the chimeric pSVneo (APH(3')II) and pNOSneo (APH(3')II) constructs, functional in mammalian and plant cells, respectively. Yeast clones resistant to G418 were obtained with all plasmids except with that bearing the bacterial APH(3')II gene. The three plasmids harbouring the functional APH genes, however, conferred different levels of G418 resistance to yeast.  相似文献   

12.
Burk DL  Hon WC  Leung AK  Berghuis AM 《Biochemistry》2001,40(30):8756-8764
3',5"-Aminoglycoside phosphotransferase type IIIa [APH(3')-IIIa] is a bacterial enzyme that confers resistance to a range of aminoglycoside antibiotics while exhibiting striking homology to eukaryotic protein kinases (ePK). The structures of APH(3')-IIIa in its apoenzyme form and in complex with the nonhydrolyzable ATP analogue AMPPNP were determined to 3.2 and 2.4 A resolution, respectively. Furthermore, refinement of the previously determined ADP complex was completed. The structure of the apoenzyme revealed alternate positioning of a flexible loop (analogous to the P-loop of ePK's), occupying part of the nucleotide-binding pocket of the enzyme. Despite structural similarity to protein kinases, there was no evidence of domain movement associated with nucleotide binding. This rigidity is due to the presence of more extensive interlobe interactions in the APH(3')-IIIa structure than in the ePK's. Differences between the ADP and AMPPNP complexes are confined to the area of the nucleotide-binding pocket. The position of conserved active site residues and magnesium ions remains unchanged, but there are differences in metal coordination between the two nucleotide complexes. Comparison of the di/triphosphate binding site of APH(3')-IIIa with that of ePK's suggests that the reaction mechanism of APH(3")-IIIa and related aminoglycoside kinases will closely resemble that of eukaryotic protein kinases. However, the orientation of the adenine ring in the binding pocket differs between APH(3')-IIIa and the ePK's by a rotation of approximately 40 degrees. This alternate binding mode is likely a conserved feature among aminoglycoside kinases and could be exploited for the structure-based drug design of compounds to combat antibiotic resistance.  相似文献   

13.
Among the five species of pathogenic Nocardia, i.e., N. asteroides, N. brasiliensis, N. farcinica, N. nova and N. otitidiscaviarum, all strains of N. brasiliensis and N. farcinica showed resistance to an aminoglycoside antibiotic, kanamycin A, showing the MIC (minimum inhibitory concentration) values of more than 100 micrograms/ml. This species-specific difference in sensitivity was found to be explained by the production of an inactivation enzyme, aminoglycoside 3'-phosphotransferase APH(3'). Structural studies by mass and NMR spectroscopy on the inactivated substance produced by a cell-free extract of the Nocardia confirmed the conversion of kanamycin A to an inactive substance, kanamycin A 3'-phosphate. The MIC values of N. otitidiscaviarum and N. nova for kanamycin A, on the other hand, ranged from 0.78 micrograms/ml to 100 micrograms/ml, and both species were non-producers of APH(3'). Sensitivity to the antibiotic and APH(3') productivity of N. asteroides varied depending on the strain.  相似文献   

14.
Tobacco mesophyll protoplasts were treated with plasmids, pCT2 (17.1 kbp) or pCT2T3 (18.3 kbp), which contained a chimeric aminoglycoside phosphotransferase II (APH(3′)II) gene and an intact nopaline synthase gene. Expression of two marker enzymes, APH(3′)II and nopaline synthase, were analyzed in transformed plants. Four out of 16 transformants obtained by pCT2T3 possessed both enzymes. Upon self-pollination, the progeny of one of transformants (T2) segregated to 153∶4 in terms of resistant and susceptible character to kanamycin, suggesting insertion of foreign genes into three independent chromosomes. The kanamycin resistant character in the rest of transformants showed 3∶1 segregation. DNA blot analysis of the T2 transformant and progenies indicated the presence of two marker genes.  相似文献   

15.
Shi K  Houston DR  Berghuis AM 《Biochemistry》2011,50(28):6237-6244
Aminoglycoside 2'-phosphotransferase IVa [APH(2')-IVa] is a member of a family of bacterial enzymes responsible for medically relevant resistance to antibiotics. APH(2')-IVa confers high-level resistance against several clinically used aminoglycoside antibiotics in various pathogenic Enterococcus species by phosphorylating the drug, thereby preventing it from binding to its ribosomal target and producing a bactericidal effect. We describe here three crystal structures of APH(2')-IVa, one in its apo form and two in complex with a bound antibiotic, tobramycin and kanamycin A. The apo structure was refined to a resolution of 2.05 ?, and the APH(2')-IVa structures with tobramycin and kanamycin A bound were refined to resolutions of 1.80 and 2.15 ?, respectively. Comparison among the structures provides insight concerning the substrate selectivity of this enzyme. In particular, conformational changes upon substrate binding, involving rotational shifts of two distinct segments of the enzyme, are observed. These substrate-induced shifts may also rationalize the altered substrate preference of APH(2')-IVa in comparison to those of other members of the APH(2') subfamily, which are structurally closely related. Finally, analysis of the interactions between the enzyme and aminoglycoside reveals a distinct binding mode as compared to the intended ribosomal target. The differences in the pattern of interactions can be utilized as a structural basis for the development of improved aminoglycosides that are not susceptible to these resistance factors.  相似文献   

16.
A new kanamycin-resistance gene, detected in Acinetobacter baumannii and designated aphA-6, was sequenced. It specifies a 30319 Dalton 3'-aminoglycoside phosphotransferase (APH(3'] that mediates resistance to kanamycin and structurally related aminoglycosides, including amikacin. Pairwise comparisons of the six types of APH(3') so far detected in human pathogens (types I, II, III and VI) and in amino-glycoside-producing microorganisms (types IV and V), confirm that APH(3') enzymes have diverged from a common ancestor. Three highly retained motifs (1: V--HGD----N; 2: G--D-GR/K-G and 3: D--K/R--Y/F---LDE) located in the C-terminal part of the enzymes were defined. Screening of protein sequence data bases fore each of these motifs revealed that motifs 1 and 2 are both found in nucleotide-binding phosphotransferases associated with a variety of biological processes, namely adenylate kinase, viral oncogenic protein kinases, elongation factors, Na+/K+-transporting ATPase, myosin and antibiotic-modifying enzymes. Motif 2 probably corresponds to the MgATP binding site, while motifs 3 and 1 could be involved in the splitting of the phosphodiester bond and in the phosphate transfer, respectively. Moreover, an additional motif, almost invariably centrally located, was found in all aminoglycoside-modifying enzymes. The occurrence of this motif, possibly a recombination site which would have allowed the association of units of separate functions, is compatible with a modular concept for the structure of aminoglycoside-modifying enzymes.  相似文献   

17.
The patterns of aminoglycoside inactivating enzymes were determined by AGRP in 31 clinical isolated of Serratia marcescens. The results were compared with the data on identification of the aminoglycoside resistance genes by the specific DNA probes. It was shown that all the isolates of Serratia marcescens contained the AAC(6')-Ic gene which was not expressed in some isolates. The other detected aminoglycoside inactivating enzymes were the following: AAC(3)-V in 17 isolates, ANT(2') in 7 isolates, AAC(3)-I in 4 isolates and APH(3')-I in 13 isolates. Reliability of the methods of AGRP and DNA-DNA hybridization was estimated in the assay of the aminoglycoside resistant clinical strains of Serratia marcescens.  相似文献   

18.
The aacA-aphD aminoglycoside resistance determinant of the Staphylococcus aureus transposon Tn4001, which specifies resistance to gentamicin, tobramycin and kanamycin, has been cloned and shown to express these resistances in Escherichia coli. The determinant encoded a single protein with an apparent size of 59 kDa which specified both aminoglycoside acetyltransferase [AAC(6')] and aminoglycoside phosphotransferase [APH(2")] activities. Nucleotide sequence analysis of the determinant showed it to be capable of encoding a 479-amino-acid protein of 56.9 kDa. analysis of Tn1725 insertion mutants of the determinant indicated that resistance to tobramycin and kanamycin is due to the AAC activity specified by, approximately, the first 170 amino acids of the predicted protein sequence and is consistent with the gentamicin resistance, specified by the APH activity, being encoded within the C-terminal region of the protein. Comparison of the C-terminal end of the predicted amino acid sequence with the reported sequences of 13 APHs and a viomycin phosphotransferase revealed a region which is highly conserved among these phosphotransferases.  相似文献   

19.
The growing threat from the emergence of multidrug resistant pathogens highlights a critical need to expand our currently available arsenal of broad-spectrum antibiotics. In this connection, new antibiotics must be developed that exhibit the abilities to circumvent known resistance pathways. An important step toward achieving this goal is to define the key molecular interactions that govern antibiotic resistance. Here, we use site-specific mutagenesis, coupled with calorimetric, NMR, and enzymological techniques, to define the key interactions that govern the binding of the aminoglycoside antibiotics neomycin and kanamycin B to APH(3')-IIIa (an antibiotic phosphorylating enzyme that confers resistance). Our mutational analyses identify the D261, E262, and C-terminal F264 residues of the enzyme as being critical for recognition of the two drugs as well as for the manifestation of the resistance phenotype. In addition, the E160 residue is more important for recognition of kanamycin B than neomycin, with mutation of this residue partially restoring sensitivity to kanamycin B but not to neomycin. By contrast, the D193 residue partially restores sensitivity to neomycin but not to kanamycin B, with the origins of this differential effect being due to the importance of D193 for catalyzing the phosphorylation of neomycin. These collective mutational results, coupled with (15)N NMR-derived pK(a) and calorimetrically derived binding-linked drug protonation data, identify the 1-, 3-, and 2'-amino groups of both neomycin and kanamycin B as being critical functionalities for binding to APH(3')-IIIa. These drug amino functionalities represent potential sites of modification in the design of next-generation compounds that can overcome APH(3')-IIIa-induced resistance.  相似文献   

20.
The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号