首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wang P  DeFea KA 《Biochemistry》2006,45(31):9374-9385
Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor (GPCR) activated upon proteolytic cleavage of its N-terminus by a number of serine proteases. We have previously reported that formation of a beta-arrestin-dependent signaling scaffold is required for PAR-2-stimulated activation of extracellular signal regulated kinases 1 and 2 and chemotaxis. beta-Arrestin-dependent pathways downstream of some GPCRs have been shown to function independently and sometimes in opposition to classic signaling through heterotrimeric G-proteins; however, this possibility has not been addressed with respect to PAR-2. Here we demonstrate that PAR-2 can increase PI3K activity through a Galphaq/Ca(2+)-dependent pathway involving PYK2 and a Src-family kinase, while inhibiting PI3K activity through a beta-arrestin-dependent mechanism, and that beta-arrestin-1 can directly associate with and inhibit the catalytic activity of p110alpha. Using size exclusion chromatography and co-immunoprecipitation, we demonstrate that the PI3K is recruited into a scaffolding complex containing PAR-2 and beta-arrestins. Inhibition of PI3K activity blocks PAR-2-stimulated chemotaxis, and beta-arrestin-1 colocalizes with p85 within the pseudopodia, suggesting that beta-arrestin-1 association with PI3K may spatially restrict its enzymatic activity and that this localized inhibition may be crucial for PAR-2-stimulated chemotaxis.  相似文献   

2.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

3.
Cytosolic division in mitotic cells involves the function of a number of cytoskeletal proteins, whose coordination in the spatio-temporal control of cytokinesis is poorly defined. We studied the role of p85/p110 phosphoinositide kinase (PI3K) in mammalian cytokinesis. Deletion of the p85alpha regulatory subunit induced cell accumulation in telophase and appearance of binucleated cells, whereas inhibition of PI3K activity did not affect cytokinesis. Moreover, reconstitution of p85alpha-deficient cells with a Deltap85alpha mutant, which does not bind the catalytic subunit, corrected the cytokinesis defects of p85alpha(-/-) cells. We analyzed the mechanism by which p85alpha regulates cytokinesis; p85alpha deletion reduced Cdc42 activation in the cleavage furrow and septin 2 accumulation at this site. As Cdc42 deletion also triggered septin 2 and cytokinesis defects, a mechanism by which p85 controls cytokinesis is by regulating the local activation of Cdc42 in the cleavage furrow and in turn septin 2 localization. We show that p85 acts as a scaffold to bind Cdc42 and septin 2 simultaneously. p85 is thus involved in the spatial control of cytosolic division through regulation of Cdc42 and septin 2, in a PI3K-activity independent manner.  相似文献   

4.
Structure and function of phosphatidylinositol-3,4 kinase   总被引:3,自引:0,他引:3  
Activation of phosphatidylinositol (PI)-kinase is involved in the regulation of a wide array of cellular activities. The enzyme exists as a dimer, consisting of a catalytic and a regulatory subunit. Five isoforms of the regulatory subunit have been identified and classified into three groups comprising respectively 85-kDa, 55-kDa, and 50-kDa proteins. Structural differences in the N-terminal regions of the different group members contribute to defining their binding specificity, their subcellular distributions, and their capacity to activate the 110-kDa catalytic subunit. Two widely distributed isoforms of the catalytic subunit have been identified-p110alpha and p110beta. Despite the fact that they bind to the p85alpha regulatory subunit similarly, p110alpha and p110beta appear to have separate functions within cells and to be activated by different stimuli. Moreover, although p85/p110 PI-kinase almost exclusively phosphorylates the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate in vitro, it appears to phosphorylate the D-4 position with similar or higher efficiency in vivo. Thus, it is highly probable that p85/p110 PI-kinase transmits signals to downstream targets via both D-3- and D-4-phosphorylated phosphoinositides.  相似文献   

5.
Phosphatidylinositol (PI) 3-kinase has an 85 kDa subunit (p85 alpha) which mediates its association with activated protein tyrosine kinase receptors through SH2 domains, and an 110 kDa subunit (p110) which has intrinsic catalytic activity. Here p85 alpha and a related protein p85 beta are shown to form stable complexes with recombinant p110 in vivo and in vitro. Using a panel of glutathione S-transferase (GST) fusion proteins of the inter-SH2 region of p85, 104 amino acids were found to bind directly the p110 protein, while deletion mutants within this region further defined the binding site to a sequence of 35 amino acids. Transient expression of the mutant p85 alpha protein in mouse L cells showed it was unable to bind PI 3-kinase activity in vivo. Mapping of the complementary site of interaction on the p110 protein defined 88 amino acids in the N-terminal region of p110 which mediate the binding of this subunit to either the p85 alpha or the p85 beta proteins. The inter-SH2 region of p85 is predicted to be an independently folded module of a coiled-coil of two long anti-parallel alpha-helices. The predicted structure of p85 suggests a basis for the intersubunit interaction and the relevance of this interaction with respect to the regulation of the PI 3-kinase complex is discussed.  相似文献   

6.
Tyroserleutide (YSL) is a tripeptide compound that has exhibited inhibitory effects on hepatocellular carcinoma in our previous research. The mechanism of this antitumor activity involves the second messenger, Ca(2+). Ca(2+) influences cell function through the Ca(2+)/calmodulin (CaM) pathway, and abnormality of the Ca(2+)/CaM system correlates closely with the occurrence of tumors. In addition, CaM associates with phosphatidylinositol 3 kinase (PI3K), thereby enhancing the activity of PI3K, which promotes cell proliferation. In order to investigate its anti-tumor mechanism, we studied the effects of YSL on CaM protein expression and mRNA level, PI3K activity, PI3K regulatory subunit p85 protein expression and mRNA level, and the mRNA level of PI3K catalytic subunits p110alpha and p110gamma in human hepatocellular carcinoma BEL-7402 xenograft tumors in nude mice. Our results showed that YSL decreased the mRNA level and protein expression of CaM, inhibited the activity of PI3K, and reduced the mRNA level and protein expression of the PI3K regulatory subunit p85 and mRNA level of PI3K catalytic subunits p110alpha and p110gamma. Accordingly, it is suggestive that the anti-tumor effects of YSL may be mediated by down regulation of CaM and PI3K subunits p85 and p110, influencing the signal transduction pathway in the tumor cells and perhaps overcoming the dysfunctional PI3K activity in tumors.  相似文献   

7.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

8.
The phosphoinositide 3-kinase (PI3K) catalytic subunit p110delta, the most recently discovered member of the heterodimeric Class IA PI3K family, has been detected uniquely in leukocytes, but not in one member of the leukocyte family: platelets. We have examined freshly prepared isolates of human platelets for the presence of this enzyme, realizing that p110delta is highly susceptible to proteolytic degradation. We have utilized p110delta-directed Western blotting, RT-PCR, PI3K activity assays, and immunoprecipitations of PI3K Class IA subunits p85alpha, p85beta, and p110delta from lysed human platelets, as well as Triton X-100-insoluble cytoskeletal preparations from resting and thrombin receptor-activated platelets. We report that p110delta is present in association with p85alpha and p85beta in platelets, both in cytosolic and cytoskeletal fractions. The latter finding is consistent with the proposed role of p110delta in cytoskeletal function.  相似文献   

9.
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.  相似文献   

10.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

11.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

12.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

13.
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110alpha or beta) associated with one of a large family of regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55gamma regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55gamma is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR.  相似文献   

14.
p63 is a homologue of p53 that functions to maintain progenitor cell populations in stratified epithelia. Delta Np63 alpha is overexpressed in epithelial cancers and has been shown to have oncogenic properties. We have previously reported that inhibition of epidermal growth factor receptor signaling results in a decrease in Delta Np63 alpha expression. Here, we demonstrate Delta Np63 alpha is a target of the phosphoinositide-3-kinase (PI3K) pathway downstream of the epidermal growth factor receptor. Treatment of keratinocytes with epidermal growth factor results in an increase in Delta Np63 alpha expression at the mRNA level, which is abrogated by inhibition of PI3K but not mitogen-activated protein kinase signaling. Small interfering RNA-mediated knockdown of the p110 beta catalytic subunit of PI3K results in a decrease in Delta Np63 alpha protein levels in keratinocytes. The results presented herein suggest that regulation of Delta Np63 alpha expression by the PI3K pathway plays a critical role in the survival and proliferative capacity of squamous epithelia.  相似文献   

15.
Shpakov AO 《Tsitologiia》2002,44(2):195-202
The heterodimer p85/p110 and p101/p120 gamma phosphatidylinositol-3-kinases (PI3K) are important effector proteins in the signal transduction in a cell. beta gamma-subunits of heterotrimetic G-proteins are some of the main regulators of PI3K functional activity. Molecular determinants in the molecules of PI3K which may be responsible for coupling with beta gamma-dimer, remain obscure. The aim of this work was to identify the determinants of the basis of a comparative analysis of primary structures of PI3K and other beta gamma-binding proteins (adenylyl cyclases of the different types, G-protein-coupled receptor kinases, phospholypase C beta). The obtained data enables us to make some conclusions. In p85/p110 PI3K, beta gamma-binding determinants are located mainly in its regulatory subunit (BCR-domain, inter-SH2-domain). However, the interaction between beta gamma and catalytic domain of the catalytic p-110 subunit is also possible. In p101/p120 gamma PI3K, beta gamma-binding regions are located only in the catalytic p120 gamma-subunit of the enzyme, i.e. in its middle part and C-terminal catalytic domain regions of 436-502, 791-822 and 911-1000). In spite of the fact that potential beta gamma-binding regions are localized in different loci of PI3K subunits, they can form a compact beta gamma-binding surface in the process of its molecule folding, similar by as in other beta gamma-binding proteins.  相似文献   

16.
The modulation of phosphoinositide 3-kinase (PI3K) activity influences the quality of cellular responses triggered by various receptor tyrosine kinases. Protein kinase C (PKC) has been reported to phosphorylate signalling molecules upstream of PI3K and thereby it may affect the activation of PI3K. Here, we provide the first evidence for a direct effect of a PKC isoenzyme on the activity of PI3K. PKCalpha but not PKCepsilon phosphorylated the catalytic subunit of the p110alpha/p85alpha PI3K in vitro in a manner inhibited by the PKC inhibitor bisindolylmaleimide I (BIM I). The incubation of PI3K with active PKCalpha resulted in a significant decrease in its lipid kinase activity and this effect was also attenuated by BIM I. We conclude that PKCalpha is able to modulate negatively the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit.  相似文献   

17.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

18.
Some Gq-coupled receptors have been shown to antagonize growth factor activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. We used a constitutively active Galphaq(Q209L) mutant to explore the effects of Galphaq activation on signaling through the PI3K/Akt pathway. Transient expression of Galphaq(Q209L) in Rat-1 fibroblasts inhibited Akt activation induced by platelet-derived growth factor or insulin treatment. Expression of Galphaq(Q209L) also attenuated Akt activation promoted by coexpression of constitutively active PI3K in human embryonic kidney 293 cells. Galphaq(Q209L) had no effect on the activity of an Akt mutant in which the two regulatory phosphorylation sites were changed to acidic amino acids. Inducible expression of Galphaq(Q209L) in a stably transfected 293 cell line caused a decrease in PI3K activity in p110alpha (but not p110beta) immunoprecipitates. Receptor activation of Galphaq also selectively inhibited PI3K activity in p110alpha immunoprecipitates. Active Galphaq still inhibited PI3K/Akt in cells pretreated with the phospholipase C inhibitor U73122. Finally, Galphaq(Q209L) co-immunoprecipitated with the p110alpha-p85alpha PI3K heterodimer from lysates of COS-7 cells expressing these proteins, and incubation of immunoprecipitated Galphaq(Q209L) with purified recombinant p110alpha-p85alpha in vitro led to a decrease in PI3K activity. These results suggest that agonist binding to Gq-coupled receptors blocks Akt activation via the release of active Galphaq subunits that inhibit PI3K. The inhibitory mechanism seems to be independent of phospholipase C activation and might involve an inhibitory interaction between Galphaq and p110alpha PI3K.  相似文献   

19.
Studying mononuclear phagocyte cell biology through genetic manipulation by non-viral transfection methods has been challenging due to the dual problems of low transfection efficiency and the difficulty in obtaining stable transfection. To overcome this problem, we developed a system for mediating RNA interference in monocytic cells. The p110alpha isoform of phosphoinositide 3-kinases (PI3Ks) was silenced using a lentiviral vector expressing short hairpin RNA (shRNA). This resulted in the generation of stable THP-1 and U-937 monocytic cell lines deficient in p110alpha. Notably, p110alpha was silenced without affecting levels of either the other class I(A) PI3K catalytic subunits p110beta and p110delta, or the p85alpha regulatory subunit. The role of p110alpha in mediating cell adherence was examined. Monocyte adherence induced in response to either lipopolysaccharide (LPS) or 1alpha,25-dihydroxycholecalciferol (D(3)) was blocked by the PI3K inhibitor LY294002. However, although adherence induced in response to D(3) was sensitive to silencing of p110alpha, LPS-induced adherence was not. Expression of the monocyte differentiation marker CD11b was also induced by D(3) in a PI3K-dependent manner and gene silencing using shRNA showed that p110alpha was also required for this effect. Taken together, these findings demonstrate that LPS and D(3) use distinct isoforms of class I(A) PI3K to induce functional responses and that lentiviral-mediated delivery of shRNA is a powerful approach to study monocyte biology.  相似文献   

20.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号