共查询到20条相似文献,搜索用时 15 毫秒
1.
A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site 总被引:1,自引:0,他引:1
Just VJ Stevenson CE Bowater L Tanner A Lawson DM Bornemann S 《The Journal of biological chemistry》2004,279(19):19867-19874
Oxalate decarboxylase (EC 4.1.1.2) catalyzes the conversion of oxalate to formate and carbon dioxide and utilizes dioxygen as a cofactor. By contrast, the evolutionarily related oxalate oxidase (EC 1.2.3.4) converts oxalate and dioxygen to carbon dioxide and hydrogen peroxide. Divergent free radical catalytic mechanisms have been proposed for these enzymes that involve the requirement of an active site proton donor in the decarboxylase but not the oxidase reaction. The oxidase possesses only one domain and manganese binding site per subunit, while the decarboxylase has two domains and two manganese sites per subunit. A structure of the decarboxylase together with a limited mutagenesis study has recently been interpreted as evidence that the C-terminal domain manganese binding site (site 2) is the catalytic site and that Glu-333 is the crucial proton donor (Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., and Ealick, S. E. (2002) Biochemistry 41, 7659-7669). The N-terminal binding site (site 1) of this structure is solvent-exposed (open) and lacks a suitable proton donor for the decarboxylase reaction. We report a new structure of the decarboxylase that shows a loop containing a 3(10) helix near site 1 in an alternative conformation. This loop adopts a "closed" conformation forming a lid covering the entrance to site 1. This conformational change brings Glu-162 close to the manganese ion, making it a new candidate for the crucial proton donor. Site-directed mutagenesis of equivalent residues in each domain provides evidence that Glu-162 performs this vital role and that the N-terminal domain is either the sole or the dominant catalytically active domain. 相似文献
2.
Ornithine decarboxylase (ODC) is an obligate homodimer that catalyzes the pyridoxal 5'-phosphate-dependent decarboxylation of l-ornithine to putrescine, a vital step in polyamine biosynthesis. A previous mutagenic analysis of the ODC dimer interface identified several residues that were distant from the active site yet had a greater impact on catalytic activity than on dimer stability [Myers, D. P., et al. (2001) Biochemistry 40, 13230-13236]. To better understand the basis of this phenomenon, the structure of the Trypanosoma brucei ODC mutant K294A was determined to 2.15 A resolution in complex with the substrate analogue d-ornithine. This residue is distant from the reactive center (>10 A from the PLP Schiff base), and its mutation reduced catalytic efficiency by 3 kcal/mol. The X-ray structure demonstrates that the mutation increases the disorder of residues Leu-166-Ala-172 (Lys-169 loop), which normally form interactions with Lys-294 across the dimer interface. In turn, the Lys-169 loop forms interactions with the active site, suggesting that the reduced catalytic efficiency is mediated by the decreased stability of this loop. The extent of disorder varies in the four Lys-169 loops in the asymmetric unit, suggesting that the mutation has led to an increase in the population of inactive conformations. The structure also reveals that the mutation has affected the nature of the ligand-bound species. Each of the four active sites contains unusual ligands. The electron density suggests one active site contains a gem-diamine intermediate with d-ornithine; the second has density consistent with a tetrahedral adduct with glycine, and the remaining two contain tetrahedral adducts of PLP, Lys-69, and water (or hydroxide). These data also suggest that the structure is less constrained in the mutant enzyme. The observation of a gem-diamine intermediate provides insight into the conformational changes that occur during the ODC catalytic cycle. 相似文献
3.
Burrell MR Just VJ Bowater L Fairhurst SA Requena L Lawson DM Bornemann S 《Biochemistry》2007,46(43):12327-12336
Oxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Bacillus subtilis decarboxylase has two manganese binding sites, and we proposed that Glu162 on a flexible lid is the site 1 general acid. We now demonstrate that a decarboxylase can be converted into an oxidase by mutating amino acids of the lid that include Glu162 with specificity switches of 282,000 (SEN161-3DAS), 275,000 (SENS161-4DSSN), and 225,000 (SENS161-4DASN). The structure of the SENS161-4DSSN mutant showed that site 2 was not affected. The requirement for substitutions other than of Glu162 was, at least in part, due to the need to decrease the Km for dioxygen for the oxidase reaction. Reversion of decarboxylase activity could be achieved by reintroducing Glu162 to the SENS161-4DASN mutant to give a relative specificity switch of 25,600. This provides compelling evidence for the crucial role of Glu162 in the decarboxylase reaction consistent with it being the general acid, for the role of the lid in controlling the Km for dioxygen, and for site 1 being the sole catalytically active site. We also report the trapping of carboxylate radicals produced during turnover of the mutant with the highest oxidase activity. Such radicals were also observed with the wild-type decarboxylase. 相似文献
4.
Svedruzić D Liu Y Reinhardt LA Wroclawska E Cleland WW Richards NG 《Archives of biochemistry and biophysics》2007,464(1):36-47
Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into CO(2) and formate using a catalytic mechanism that remains poorly understood. The Bacillus subtilis enzyme is composed of two cupin domains, each of which contains Mn(II) coordinated by four conserved residues. We have measured heavy atom isotope effects for a series of Bacillus subtilis OxDC mutants in which Arg-92, Arg-270, Glu-162, and Glu-333 are conservatively substituted in an effort to define the functional roles of these residues. This strategy has the advantage that observed isotope effects report directly on OxDC molecules in which the active site manganese center(s) is (are) catalytically active. Our results support the proposal that the N-terminal Mn-binding site can mediate catalysis, and confirm the importance of Arg-92 in catalytic activity. On the other hand, substitution of Arg-270 and Glu-333 affects both Mn(II) incorporation and the ability of Mn to bind to the OxDC mutants, thereby precluding any definitive assessment of whether the metal center in the C-terminal domain can also mediate catalysis. New evidence for the importance of Glu-162 in controlling metal reactivity has been provided by the unexpected observation that the E162Q OxDC mutant exhibits a significantly increased oxalate oxidase and a concomitant reduction in decarboxylase activities relative to wild type OxDC. Hence the reaction specificity of a catalytically active Mn center in OxDC can be perturbed by relatively small changes in local protein environment, in agreement with a proposal based on prior computational studies. 相似文献
5.
Mariarita Bertoldi Carla Borri Voltattorni 《Archives of biochemistry and biophysics》2009,488(2):130-139
The pyridoxal 5′-phosphate dependent-enzyme Dopa decarboxylase, responsible for the irreversible conversion of l-Dopa to dopamine, is an attractive drug target. The contribution of the pyridoxal-Lys303 to the catalytic mechanisms of decarboxylation and oxidative deamination is analyzed. The K303A variant binds the coenzyme with a 100-fold decreased apparent equilibrium binding affinity with respect to the wild-type enzyme. Unlike the wild-type, K303A in the presence of l-Dopa displays a parallel progress course of formation of both dopamine and 3,4-dihydroxyphenylacetaldehyde (plus ammonia) with a burst followed by a linear phase. Moreover, the finding that the catalytic efficiencies of decarboxylation and of oxidative deamination display a decrease of 1500- and 17-fold, respectively, with respect to the wild-type, is indicative of a different impact of Lys303 mutation on these reactions. Kinetic analyses reveal that Lys303 is involved in external aldimine formation and hydrolysis as well as in product release which affects the rate-determining step of decarboxylation. 相似文献
6.
7.
The conformations of a substrate and a product bound to the active site of S-adenosylmethionine synthetase 总被引:1,自引:0,他引:1
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized. 相似文献
8.
Horse liver phosphopantothenoylcysteine decarboxylase (EC 4.1.1.36) is rapidly inactivated by N-acetoacetylation with diketene following a pseudo-first-order kinetics: the presence of substrate quantitatively protects against this inactivation. Histidine photo-oxidation with methylene blue or rose bengal brings about the total loss of activity. These results indicate the presence of functional lysyl and histidyl groups at the active site of the enzyme. The substrate sulphydryl group is essential for enzyme activity. Enzymatic decarboxylation is proposed to result from a combined action of the keto group of the enzyme-bound pyruvate protonated by an essential histidine and a protonated amino group of a lysine. 相似文献
9.
Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. 总被引:2,自引:1,他引:2
下载免费PDF全文

Interfacial activation of Rhizomucor miehei lipase is accompanied by a hinge-type motion of a single helix (residues 83-94) that acts as a lid over the active site. Activation of the enzyme involves the displacement of the lid to expose the active site, suggesting that the dynamics of the lid could be of mechanistic and kinetic importance. To investigate possible activation pathways and to elucidate the effect of a hydrophobic environment (as would be provided by a lipid membrane) on the lid opening, we have applied molecular dynamics and Brownian dynamics techniques. Our results indicate that the lipase activation is enhanced in a hydrophobic environment. In nonpolar low-dielectric surroundings, the lid opens in approximately 100 ns in the BD simulations. In polar high-dielectric (aqueous) surroundings, the lid does not always open up in simulations of up to 900 ns duration, but it does exhibit some gating motion, suggesting that the enzyme molecule may exist in a partially active form before the catalytic reaction. The activation is controlled by the charged residues ARG86 and ASP91. In the inactive conformation, ASP91 experiences repulsive forces and pushes the lid toward the open conformation. Upon activation ARG86 approaches ASP61, and in the active conformation, these residues form a salt bridge that stabilizes the open conformation. 相似文献
10.
11.
12.
Mats Holmquist Mats Martinelle Per Berglund Ib Groth Clausen Shamkant Patkar Allan Svendsen Karl Hult 《The protein journal》1993,12(6):749-757
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications. 相似文献
13.
14.
15.
Jabalquinto AM Laivenieks M Cabezas M Zeikus JG Cardemil E 《Journal of Protein Chemistry》2002,21(7):443-445
Anaerobiospirillum succiniciproducens His225Gln, Asp262Asn, Asp263Asn, and Thr249Asn phosphoenolpyruvate carboxykinases were analyzed for their oxaloacetate decarboxylase, and pyruvate kinase–like activities. The His225Gln and Asp263Asn enzymes showed increased K
m values for Mn2+ and PEP compared with the native enzyme, suggesting a role of His225 and Asp263 in Mn2+ and PEP binding. No mayor alterations in K
m values for oxaloacetate were detected for the varied enzymes. Alterations of His225, Asp262, Asp263, or Thr249, however, did not affect the V
max of the secondary activities as much as they affected the V
max for the main reaction. The results presented in this communication suggest different rate-limiting steps for the primary reaction and the secondary activities. 相似文献
16.
Discovery of nonpeptide,peptidomimetic peptidase inhibitors that target alternate enzyme active site conformations 总被引:2,自引:0,他引:2
Structure-generating programs provide rational methods to rapidly design novel scaffolds targeting the biologic receptor of choice. Recent research has demonstrated proteins equilibrate between families of conformations (ensembles) for which drug design may target. New methods are currently being developed utilizing structure-generating programs to target alternate enzyme conformations in an attempt to overcome the challenge of developing therapeutically useful molecules. These new methods provide the potential to overcome bioavailability problems encountered with peptide and peptide-like molecules by identifying novel small molecule scaffolds. 相似文献
17.
18.
Site-directed alteration of the active-site residues of histidine decarboxylase from Clostridium perfringens 总被引:3,自引:0,他引:3
To clarify the mechanism of biogenesis and catalysis by the pyruvoyl-dependent histidine decarboxylase (HisDCase) from Clostridium perfringens, 12 mutant genes encoding amino acid substitutions at the active site of this enzyme were constructed and expressed in Escherichia coli. The resulting mutant proteins were purified to homogeneity, characterized, and subjected to kinetic analysis. The results (a) exclude all polar amino acid residues in the active site except Glu-214 as donor of the proton that replaces the carboxyl group of histidine during decarboxylation and, since E214I and E214H are nearly inactive, indicate that Glu-214 is the essential proton donor; (b) demonstrate the importance to substrate binding of hydrophobic interactions between Phe-98, Ile-74, and the imidazole ring of histidine, and of hydrogen bonding between Asp-78 and N2 of the substrate; and (c) demonstrate a significant unidentified role for Glu-81 in the maintenance of the active-site structure. The proposed roles of these amino acid residues are consistent with those assigned on the basis of crystallographic evidence to the corresponding residues at the active site of the related HisDCase from Lactobacillus 30a [Gallagher, T., Snell, E. E., & Hackert, M. L. (1989) J. Biol. Chem. 264, 12737-12743]. Of the residues altered, only Ser-97 was essential for the autocatalytic serinolysis reaction by which this HisDCase, (alpha beta)6, is derived from its inactive, pyruvate-free precursor, proHisDCase, pi 6.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Theoretical conformational analysis of a series of alpha 1-adrenoceptor activators and inhibitors including 6-fluoronoradrenaline, methoxamine, phenoxydenzamine, piperoxane, and WB-4101 has been carried out by classical semi-empirical method. The conformational energy minimization was performed in the space of the majority of torsional and bond angles. The selection of productive conformations was made according to the following criteria: 1) low conformational energy; 2) similarity of the nitrogen atoms and phenyl rings spatial disposition in all ligands; 3) accessibility for intermolecular interactions of the functional moieties in all ligands. The productive conformation of alpha 1-adrenoceptor endogenous activator, noradrenaline, has the Ph-C-C-N fragment in the perpendicular (-)-gaushe conformation, and ethanolamine side chain beta-hydroxyl in trans arrangement relative to the meta hydroxyl of the catechol ring. A topographic model for the receptor was suggested, its components being the arylophilic, nucleophilic, hydrophobic, and proton acceptor groups, along with the binding region for catechol hydroxyls, situated against the most accessible sides of the functional moieties of the ligands. Structure-activity relationships for a series of alpha 1-adrenoceptor ligands are discussed in the light of the proposed model. Both common and characteristic features of the alpha 1-adrenoceptor model are considered in comparison with the earlier suggested beta 2-adrenoceptor model. 相似文献
20.
The human mitochondrial branched-chain alpha-ketoacid decarboxylase/dehydrogenase (BCKD) is a heterotetrameric (alpha(2)beta(2)) thiamine diphosphate (TDP)-dependent enzyme. The recently solved human BCKD structure at 2.7 A showed that the two TDP-binding pockets are located at the interfaces between alpha and beta' subunits and between alpha' and beta subunits. In the present study, we show that the E76A-beta' mutation results in complete inactivation of BCKD. The result supports the catalytic role of the invariant Glu-76-beta' residue in increasing basicity of the N-4' amino group during the proton abstraction from the C-2 atom on the thiazolium ring. A substitution of His-146-beta' with Ala also renders the enzyme completely inactive. The data are consistent with binding of the alpha-ketoacid substrate by this residue based on the Pseudomonas BCKD structure. Alterations in Asn-222-alpha, Tyr-224-alpha, or Glu-193-alpha, which coordinates to the Mg(2+) ion, result in an inactive enzyme (E193A-alpha) or a mutant BCKD with markedly higher K(m) for TDP and a reduced level of the bound cofactor (Y224A-alpha and N222S-alpha). Arg-114-alpha, Arg-220-alpha, and His-291-alpha interact with TDP by directly binding to phosphate oxygens of the cofactor. We show that natural mutations of these residues in maple syrup urine disease (MSUD) patients (R114W-alpha and R220W-alpha) or site-directed mutagenesis (H291A-alpha) also result in an inactive or partially active enzyme, respectively. Another MSUD mutation (T166M-alpha), which affects one of the residues that coordinate to the K(+) ion on the alpha subunit, also causes inactivation of the enzyme and an attenuated ability to bind TDP. In addition, fluorescence measurements establish that Trp-136-beta in human BCKD is the residue quenched by TDP binding. Thus, our results define the functional roles of key amino acid residues in human BCKD and provide a structural basis for MSUD. 相似文献