首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expanded bed adsorption chromatography is used to capture the protein product of interest from a crude biological suspension directly, thereby eliminating the need for the removal of the cell debris. While this technique may replace three or four unit operations in a typical downstream process for biological product recovery, the adsorption process is influenced by the interaction between the microbial cells or cell debris and the adsorbent as well as the presence of contaminating solutes. The influence of the extent and nature of disruption of Bakers' yeast on the adsorption of the total soluble protein and alpha-glucosidase was investigated in this study. Two different techniques were used for cell disruption: high pressure homogenisation and hydrodynamic cavitation. Two different adsorbents were chosen: anionic Streamline DEAE and cationic Streamline SP. The settled bed height and the superficial velocity were constant across all experiments. The feedstock was characterised in terms of viscosity, pH, conductivity, particle size distribution of the cell debris and the extent of protein and alpha-glucosidase released. The performance of the adsorption process was found to be influenced by the electrostatic interactions of cell debris with the anionic adsorbent Streamline DEAE and the intraparticle diffusional resistance inside the pores of the adsorbent matrix. The increase in the intensity of disruption resulted in an increase in the dynamic binding capacity (10% feed) of both the total soluble protein and the alpha-glucosidase. However, the increase in the DBC of protein and alpha-glucosidase were not proportional. The amount of protein that could be adsorbed per ml of adsorbent from the samples subjected to a lower intensity of disruption was found to exceed that obtained at a higher disruption intensity on increasing the volume of feed suggesting multilayer adsorption. In this case, selective adsorption of the model protein alpha-glucosidase was reduced, illustrating the compromise of maximising protein recovery through non-specific binding. The study illustrates the need for an interrogation of the intensity of disruption needed and a rigorous understanding of the influence of cell debris and adsorbent-protein interaction, in optimising the selective recovery of intracellular products by EBA.  相似文献   

2.
Expanded bed adsorption (EBA) is an integrated technology for the primary recovery of proteins from crude feedstock. Interactions between solid matter in the feed suspension and fluidised adsorbent particles influence bed stability and therefore have a significant impact on protein adsorption in expanded beds. In order to design efficient and reliable EBA processes a strategy is needed, which allows to find operating conditions, where these adverse events do not take place. In this paper a methodological approach is presented, which allows systematic characterisation and minimisation of cell/adsorbent interactions with as little experimental effort as possible. Adsorption of BSA to the anion exchanger Streamline Q XL from a suspension containing S. cerevisiae cells was chosen as a model system with a strong affinity of the biomass towards the stationary phase. Finite bath biomass adsorption experiments were developed as an initial screening method to estimate a potential interference. The adhesiveness of S. cerevisiae to the anion exchanger could be reduced significantly by increasing the conductivity of the feedstock. A biomass pulse response method was used to find optimal operation conditions showing no cell/adsorbent interactions. A good correlation was found between the finite bath test and the pulse experiment for a variety of suspensions (intact yeast cells, E. coli homogenate and hybridoma cells) and adsorbents (Streamline Q XL, DEAE and SP), which allows to predict cell/adsorbent interactions in expanded beds just from finite bath adsorption tests. Under the optimised operating conditions obtained using the prior methods, the stability of the expanded bed was investigated during fluidisation in biomass containing feedstock (up to 15% yeast on wet weight basis) employing residence time distribution analysis and evaluation by an advanced model. Based on these studies threshold values were defined for the individual experiments, which have to be achieved in order to obtain an efficient EBA process. Breakthrough experiments were conducted to characterise the efficiency of BSA adsorption from S. cerevisiae suspensions in EBA mode under varying operating conditions. This allowed to correlate the stability of the expanded bed with its sorption efficiency and therefore could be used to verify the threshold values defined. The approach presented in this work provides a fast and simple way to minimise cell/adsorbent interactions and to define a window of operation for protein purification using EBA.  相似文献   

3.
4.
Expanded bed adsorption (EBA) is an integrative unit operation for the primary recovery of bioproducts from crude feedstock. Biomass electrostatic adhesion often leads to bad bed stability and low adsorption capacity. The results indicate that effective cell disruption is a potential approach to reduce the biomass adhesion during anion-exchange EBA. Two common cell disruption methods (sonication treatment and high-pressure disruption with a French press) were investigated in the present work. The mean size of cell debris reduced dramatically during the cell disruption process, and the absolute value of the zeta potential of cell debris also decreased significantly as the mean size reduced. The biomass transmission index (BTI) obtained through the biomass pulse response experiment was used to quantitatively evaluate the biomass-adsorbent interaction. Combining the influences of zeta potential of adsorbent (zetaA), zeta potential of biomass (zetaB), and biomass mean size (dB), the parameter of (-zetaA.zetaB.dB) was explored as a reasonable indicator of biomass adhesion in expanded beds. A good linear correlation was confirmed between BTI and (-zetaA.zetaB.dB) for all biomass and cell disruption conditions tested, which was independent of the cell disruption methods. A target parameter (-zetaA.zetaB.dB) of 120 mV2mum was derived for BTI above 0.9, which meant a very slight influence of biomass on the stability of the expanded bed. This criterion could be used as a rational control target for cell disruption processes in EBA applications.  相似文献   

5.
Cell/adsorbent interactions in expanded bed adsorption of proteins   总被引:6,自引:0,他引:6  
Expanded bed adsorption (EBA) is an integrated technology for the primary recovery of proteins from unclarified feedstock. A method is presented which allows a qualitative and quantitative understanding of the main mechanisms governing the interaction of biomass with fluidised resins. A pulse response technique was used to determine the adsorption of various cell types (yeast, Gram positive and Gram negative bacteria, mammalian cells and yeast homogenate) to a range of commercially available matrices for EBA. Cells and cell debris were found to interact with the ligands of agarose based resins mainly by electrostatic forces. From the adsorbents investigated the anion exchange matrix showed the most severe interactions, while cation exchange and affinity adsorbents appeared to be less affected. Within the range of biologic systems under study E. coli cells had the lowest tendency of binding to all matrices while hybridoma cells attached to all the adsorbents except the protein A affinity matrix. The method presented may be employed for screening of suitable biomass/adsorbent combinations, which yield a robust and reliable initial capture step by expanded bed adsorption from unclarified feedstock.  相似文献   

6.
Vortex flow is a secondary flow pattern that appears above a critical rotation rate in the annular gap between an inner rotating solid cylinder and an outer stationary cylindrical shell. By suspending adsorbent resin in the vortices, a novel unit operation, vortex flow adsorption (VFA), is created. In VFA, the rotation of the inner cylinder facilitates the fluidization of the adsorbent resin. Similar to expanded bed processes, VFA has high fluid voidage so that it can be used to recover biochemical products directly from fermentation broths or cell homogenates without removing cells or cell debris first. In this study, recombinant human alpha1-antitrypsin (alpha1-AT) was expressed in Escherichia coli as a fusion with a modified intein containing a chitin-binding domain. Therefore, the fusion protein can be recovered by chitin resin affinity adsorption. The intein can be induced to undergo in vitro peptide bond cleavage to specifically release alpha1-AT from the bound fusion protein. The capture efficiency of the fusion protein, 26.2%, was obtained in the VFA process. In addition, the specific activity of alpha1-AT was dramatically improved from 0.3 to 205.2 EIC/(mg total protein) after adsorption and cleavage. Therefore, vortex flow adsorption is an integrative technology to combine the primary clarification, concentration, and purification steps in conventional downstream processing into a single unit operation to efficiently recover and purify biochemical products.  相似文献   

7.
Elution in expanded bed mode has been investigated in the expanded bed adsorption process. Elution was performed at different sample loads and at different liquid velocities using bovine serum albumin as a model. The effect on mixing in the liquid phase and on the volume of the eluted peak were determined. Mixing in the liquid phase was almost unaffected when elution was performed at 100 cm/h, regardless of sample load. However, mixing increased significantly when elution was carried out at high liquid velocities (300 cm/h) at high sample loads. The eluted peak volume increased with liquid velocity and increased sample load. It was approx. 80% higher in expanded bed mode than in packed bed from an adsorbent completely saturated with protein eluted at 300 cm/h.  相似文献   

8.
The practical feasibility and generic applicability of the direct integration of cell disruption by bead milling with the capture of intracellular products by fluidised bed adsorption has been demonstrated. Pilot-scale purification of the enzyme L-asparaginase from unclarified Erwinia chrysanthemi disruptates exploiting this novel approach yielded an interim product which rivalled or bettered that produced by the current commercial process employing discrete operations of alkaline lysis, centrifugal clarification and batch adsorption. In addition to improved yield and quality of product, the process time during primary stages of purification was greatly diminished. Two cation exchange adsorbents, CM HyperD LS (Biosepra/Life Technologies) and SP UpFront (custom made SP form of a prototype stainless steel/agarose matrix, UpFront Chromatography) were physically and biochemically evaluated for such direct product sequestration. Differences in performance with regard to product capacity and adsorption/desorption kinetics were demonstrated and are discussed with respect to the design of adsorbents for specific applications. In any purification of L-asparaginase (pI = 8.6), product-debris interactions commonly diminish the recovery of available product. It was demonstrated herein, that immediate disruptate exposure to a fluidised bed adsorbent promoted concomitant reduction of product in the liquid phase, which clearly counter-acted the product-debris interactions to the benefit of product yield.  相似文献   

9.
Adsorption chromatography in expanded beds is a widely used technology for direct capture of target proteins from fermentation broths. However, in many cases this method cannot be applied as a result of the strong tendency of cells or cell debris to interact with the adsorbent beads. To prevent contamination of the expanded bed with the biomass, STREAMLINE DEAE, anion exchanger designed for expanded bed adsorption, was modified with a layer of poly(acrylic acid) (PAA). The shielding layer of polyelectrolyte was attached to the surface of the matrix beads via electrostatic interactions. PAA with a high degree of polymerization was chosen to prevent diffusion of large polymer molecules into the pores of adsorbent. Thus, the shielding layer of PAA was adsorbed only at the mouth of the pores of STREAMLINE DEAE beads and only marginally decreased the binding capacity of the ion exchanger for bovine serum albumin, the model protein in this study. PAA-coated STREAMLINE DEAE practically did not interact with yeast cells, which otherwise bound strongly to the native adsorbent at neutral conditions. Cell-resistant PAA-coated anion exchanger was successfully used for isolation of BSA from the model protein mixture containing BSA, lysozyme (positively charged at applied conditions), and yeast cells. The layer of PAA was stable under mild elution conditions, and the modified adsorbent could be used in the repeated purification cycles.  相似文献   

10.
Expanded bed adsorption is an integrative technology in downstream processing allowing the direct capture of target proteins from biomass (cells or cell debris) containing feedstocks. Potential adhesion of biomass on the surface of adsorbent, however, may hamper the application of this technique. Since the electrostatic forces dominate the interactions between biomass and adsorbent, the concept of zeta potential was introduced to characterize the biomass/adsorbent electrostatic interactions during expanded bed application. The criterion of zeta potential evaluation proposed in the previous paper (Biotechnol Bioeng, 83(2):149-157, 2003) was verified further with the experimental validation. The zeta potential of intact cells and homogenates of four microorganisms (Escherichia coli, Bacillus subtilis, Pichia pastoris, and S. cerevisiae) were measured under varying pH and salt concentration, and two ion-exchange adsorbents (Streamline DEAE and Streamline QXL) were investigated. The biomass transmission index (BTI) from the biomass pulse response experiments was used as the indicator of biomass adhesion in expanded bed. Combining the influences from zeta potential of adsorbent (zeta(a)), zeta potential of biomass (zeta(b)) and biomass size (d), a good relationship was established between the zeta potential parameter (-zeta(a)zeta(b)d) and BTI for all experimental conditions. The threshold value of parameter (-zeta(a)zeta(b)d) can be defined as 120 mV2 microm for BTI above 0.9. This means that the systems with (-zeta(a)zeta(b)d) < 120 show neglectable electrostatic bio-adhesion, and would have a considerable probability of forming stable expanded beds in a biomass suspension under the particular experimental conditions.  相似文献   

11.
A novel flow injection biosensor system for monitoring fermentation processes has been developed using an expanded micro bed as the enzyme reactor. An expanded bed reactor is capable of handling a mobile phase containing suspended matter like cells and cell debris. Thus, while the analyte is free to interact with the adsorbent, the suspended particulate matter passes through unhindered. With the use of a scaled down expanded bed in the flow injection analysis (FIA) system, it was possible to analyse samples directly from a fermentor without the pretreatment otherwise required to extract the analyte or remove the suspended cells. This technique, therefore, provides a means to determine the true concentrations of the metabolites in a fermentor, with more ease than possible with other techniques.Glucose oxidase immobilised on STREAMLINE was used to measure glucose concentration in a suspension of dead yeast cells. There was no interference from the cell particles even at high cell densities such as 15 gm dry weight per litre. The assay time was about 6 min. Accuracy and reproducibility of the system was found to be good. In another scheme, lactate oxidase was covalently coupled to STREAMLINE for expanded bed operation. With the on-line expanded micro bed FIA it was possible to follow the fermentation with Lactobacillus casei.  相似文献   

12.
Expanded bed adsorption (EBA) is an efficient protein purification process reducing time and steps of downstream processing (DSP) since nonclarified culture media can be processed directly without prior treatments such as filtration or centrifugation. However, cells and debris can interact with the adsorbent and affect bed stability as well as purification performance. To optimize EBA operating conditions these biomass/adsorbent interactions have to be understood and characterized. The adsorption of Human Embryonic Kidney cells (HEK 293) on unprimed and nickel-primed metal affinity adsorbent was studied in a closed loop EBA setup. With the unprimed adsorbent, the overall level of interaction observed was nonsignificant. With the nickel-primed adsorbent and an initial cell concentration ranging from 0.08 x 10(6) to 0.2 x 10(6) cells/mL, biomass/adsorbent interaction was found to be moderate and the adsorption apparent first-order kinetic rate constant was determined to be k = 0.009 to 0.011 min(-1).  相似文献   

13.
The recovery of a recombinant !-amylase expressed in the periplasm of E. coli using packed bed, expanded bed and batch adsorption is compared. Recovery of recombinant protein using a packed bed requires complete clarification using microfiltration, resulting in loss of yield, or high speed centrifugation which reduces efficiency for viscous periplasmic feedstreams at large scale. Expanded beds ease these problems, however, low levels of cell debris and dilution of the feedstream to 5% sucrose are required to prevent particle aggregation and blockage of adaptors. Batch adsorption provides an alternative option by allowing a rapid capture step (~20 min) which removes the target protein from the feedstream thereby allowing it to be purified by further purification stages, however, the mixing of adsorbent during batch adsorption poses problems.  相似文献   

14.
The influence of whole yeast cells (0–15% w/v) on the protein adsorption performance in dye-ligand chromatography was explored. The adsorption of a model protein, bovine serum albumin (BSA), was selected to demonstrate this approach. The UpFront adsorbent (ρ=1.5 g/cm3) derivatised with Cibacron Blue 3GA and a commercially available expanded bed column (20 mm i.d.) from UpFront Chromatography, Denmark, were employed in the batch binding and expanded bed operation. The BSA binding capacity was demonstrated to not be adversely affected by the presence of yeast cells. The dynamic binding capacity of BSA at aC/C 0=0..1 biomass concentration of 5, 10, 15% w/v were 9, 8, and 7.5 mg/mL of settled adsorbent, respectively.  相似文献   

15.
Brobjer M 《Bioseparation》1999,8(1-5):219-228
A capture step was developed using the expanded bed adsorption technology to separate a protein of interest on a cation exchanger from a crude Escherichia coli homogenate. This method was developed in bench-top scale using a STREAMLINE 25 column (Amersham Pharmacia Biotech, Sweden) and STREAMLINE SP. The development was based on earlier experiments performed in a packed bed column (SP-Sepharose FF) to investigate the conditions for sample application, wash and elution. The packed bed method was transformed into an expanded bed method by slightly modifying the wash procedure and cleaning in place (CIP). This method was then scaled-up to pilot scale and used for production of the fusion protein according to cGMP.The yield over the step in pilot scale was 70-85% compared with only 30-50% in small scale. Pressure build-up, attachment of biomass to the adsorbent and collapses of the expanded bed were phenomena seen in small scale but not in pilot scale. The scale-up of the step significantly improved the performance of the step.  相似文献   

16.
Stability of expanded beds during the application of crude feedstock   总被引:3,自引:0,他引:3  
Expanded bed adsorption is an integrated technology that allows the introduction of a particle containing feedstock without the risk of blocking the bed. Provided a perfectly classified fluidized bed (termed expanded bed) is formed in the crude feed, a sorption performance comparable to packed beds is found. During the application of biomass containing samples to stable expanded beds an increase in bed expansion due to the higher density and viscosity of the feed is encountered. In this article it is investigated whether the expanded bed condition is also fulfilled during the transition in bed expansion from lower to higher density (i.e., from an equilibration buffer to a biomass containing feedstock). Residence time distribution analyses were performed by using model systems and a yeast suspension during this transition phase. It is shown that in systems in which the biomass does not interact with the fluidized stationary phase, the perfectly classified fluidization is maintained also during this transition phase regardless of the type of feedstock. Additional bed expansion takes place in an "ordered" manner without compromising bed stability. In case of biomass/adsorbent interactions, a deterioration in bed stability is found directly when the crude feed is loaded.  相似文献   

17.
In the present work, a single-step purification of recombinant nucleocapsid protein (NP) of the Newcastle disease virus (NDV) directly from unclarified feedstock using an expanded bed adsorption chromatography (EBAC) was developed. Streamline 25 column (ID = 25 mm) was used as a contactor and Streamline chelating adsorbent immobilized with Ni2+ ion was used as affinity adsorbent. The dynamic binding capacity of Ni2+ -loaded Streamline chelating adsorbent for the NP protein in unclarified feedstock was found to be 2.94 mg ml(-1) adsorbent at a superficial velocity of 200 cm h(-1). The direct purification of NP protein from unclarified feedstock using expanded bed adsorption has resulted in a 31% adsorption and 9.6% recovery of NP protein. The purity of the NP protein recovered was about 70% and the volume of processing fluid was reduced by a factor of 10. The results of the present study show that the IMA-EBAC developed could be used to combine the clarification, concentration and initial purification steps into a single-step operation.  相似文献   

18.
Evaluation of the effect of in-bed sampling on expanded bed adsorption   总被引:2,自引:0,他引:2  
Bruce LJ  Chase HA 《Bioseparation》1999,8(1-5):77-83
An expanded bed adsorption (EBA) column (5 cm diameter) has been modified to allow the abstraction of liquid samples from various positions along the height of an expanded bed. As the adsorbent particles were fluidized, in-bed monitoring of key component concentrations during feedstock application, washing and elution was achieved by the withdrawal of liquid samples from the voids within the expanded bed through ports along the wall of the column. Component levels in the withdrawn streams can be assayed using on-line analytical chromatography or samples can be collected and assayed off-line. On-line monitoring can be used to control the duration of the loading stage and as a tool to provide information about the hydrodynamic and adsorption/desorption processes that occur during expanded bed adsorption. Studies of residence time distributions indicated that the modifications to the column do not significantly affect liquid dispersion. Using the adsorption of glucose-6-phosphate dehydrogenase from yeast homogenate on Streamline DEAE as a model system, comparison of breakthrough curves for runs when in-bed monitoring was and was not performed also suggested that separation efficiency is not appreciably affected by in-bed sampling.  相似文献   

19.
《Process Biochemistry》1999,34(2):159-165
The interaction of a mammalian cell culture broth with two commercially available adsorbents for the use in expanded bed adsorption (EBA) has been studied. A cation exchange resin (Streamline SP) and an affinity adsorbent (Streamline rProtein A) were compared with regard to adsorption of hybridoma cells during sample application as well as potential cell damage. The results showed that hybridoma cells interact significantly with an expanded bed of cation exchange adsorbents but not with the Protein A adsorbent. After application of 17–20 sedimented bed volumes a saturation of the Streamline SP resin with cells was noted. With both adsorbents no measurable cell damage was found and IgG1 was recovered in approximately 95% yield. The capacity for IgG1 adsorption at 3% breakthrough was 2.7 mg IgG1/ml Streamline rProtein A at a constant fluid velocity of 380 cm/h and 1.0 mg IgGl/ml Streamline SP at 215–240 cm/h fluid velocity.  相似文献   

20.
A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superparamagnetic supports followed by rapid separation of the loaded adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase® from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h–1. Use of the bacitracin-linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a processing rate of 12 m h–1 resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h–1 raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased to three, significant drops in both magnetic adsorbent consumption (3.6 fold) and filter volume required (1.3 fold) could be achieved at the expense of a reduction in productivity from 10.7 to 4.4 times that of expanded bed adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号