首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

2.
Signalling mechanisms of anoikis   总被引:13,自引:0,他引:13  
Apoptosis following loss of cell anchorage ('anoikis') is of relevance for development, tissue homeostasis and disease. Integrins regulate cell viability through their interaction with the extracellular matrix and they can sense mechanical forces arising from the matrix and convert these stimuli to chemical signals capable of modulating intracellular signal transduction. Recently it has been shown that protein kinase signalling pathways and apoptosis-related molecular control anoikis both positively and negatively. Focal adhesion kinase, when activated by integrins, can suppress anoikis. Phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase may mediate the anoikis-suppressing effects of cells. Conversely, the stress-activated protein kinase/Jun amino-terminal kinase pathway promotes anoikis. In addition, certain bcl-2 and bcl-2-related proteins may also participate in the regulating of anoikis. In this review, molecular mechanisms of signal pathway inducing and perpetuating detachment-induced apoptosis will be discussed with special emphasis on the role of integrins, focal adhesion kinase, phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase and bcl-2 family members.  相似文献   

3.
4.
5.
In addition to its well-known activational mechanism, the steroid hormone 17-beta-estradiol (E2) has been shown to rapidly activate various signal transduction pathways that could participate in estrogen-mediated regulation of synaptic plasticity. Although the mechanisms underlying these effects are not clearly understood, it has been repeatedly suggested that they involve a plasma membrane receptor which has direct links to several intracellular signaling cascades. To further address the question of whether E2 acts directly at the synapse and through membrane-bound receptors, we studied the effects of E2 and of ligands of estrogen receptors on various signaling pathways in cortical synaptoneurosomes. Our results demonstrate that E2 elicits N-methyl-D-aspartate receptor phosphorylation and activates the extracellular signal-regulated kinase and the phosphatidylinositol 3-kinase/Akt signal transduction pathways in this cortical membrane preparation. Furthermore, we provide evidence for the presence of a membrane-bound estrogen receptor responsible for these effects in cortical synaptoneurosomes. Our study demonstrates that E2 directly acts at cortical synapses, and that synaptoneurosomes provide a useful system to investigate the mechanisms by which E2 regulates synaptic transmission and plasticity.  相似文献   

6.
7.
The signal transduction pathways involved in adhesion molecule L1-triggered neuritogenesis and neuroprotection were investigated using the extracellular domain of mouse or human L1 in fusion with the Fc portion of human immunoglobulin G or L1 purified from mouse brain by affinity chromatography. Substrate L1-triggered neuritogenesis and neuroprotection depended on distinct but also overlapping signal transduction pathways and on the expression of L1 at the neuronal cell surface. PI3 kinase inhibitors, Src family kinase inhibitors as well as mitogen-activated protein kinase kinase inhibitors reduced both L1-triggered neuritogenesis and neuroprotection. In contrast, fibroblast growth factor receptor inhibitors, a protein kinase A inhibitor, and an inhibitor of cAMP-mediated signal transduction pathways, blocked neuritogenesis, but did not affect L1-triggered neuroprotection. Proteolytic cleavage of L1 or its interaction partners is necessary for both L1-mediated neuritogensis and neuroprotection. Furthermore, L1-triggered neuroprotection was found to be associated with increased phosphorylation of extracellular signal-regulated kinases 1/2, Akt and Bad, and inhibition of caspases. These observations suggest possibilities of differentially targeting signal transduction pathways for L1-dependent neuritogenesis and neuroprotection.  相似文献   

8.
Structure, regulation and function of PKB/AKT--a major therapeutic target   总被引:24,自引:0,他引:24  
Protein phosphorylation and dephosphorylation play a major role in intracellular signal transduction activated by extracellular stimuli. Protein kinase B (PKB/Akt) is a central player in the signal transduction pathways activated in response to growth factors or insulin and is thought to contribute to several cellular functions including nutrient metabolism, cell growth and apoptosis. Recently, several significant publications have described novel mechanisms used to regulate PKB. Since the alteration of PKB activity is associated with several human diseases, including cancer and diabetes, understanding PKB regulation is an important task if we are to develop successful therapeutics.  相似文献   

9.
10.
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.  相似文献   

11.
The serine/threonine kinase Akt, or protein kinase B (PKB), has recently been a focus of intense research. It appears that Akt/PKB lies in the crossroads of multiple cellular signaling pathways and acts as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI 3-kinase). Akt/PKB is particularly important in mediating several metabolic actions of insulin. Another major activity of Akt/PKB is to mediate cell survival. In addition, the recent discovery of the tumor suppressor PTEN as an antagonist of PI 3-kinase and Akt/PKB kinase activity suggests that Akt/PKB is a critical factor in the genesis of cancer. Thus, elucidation of the mechanisms of Akt/PKB regulation and its physiological functions should be important for the understanding of cellular metabolism, apoptosis, and cancer.  相似文献   

12.
13.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

14.
The role of cell adhesion molecules in mediating interactions with neighboring cells and the extracellular matrix has long been appreciated. More recently, these molecules have been shown to modulate intracellular signal transduction cascades critical for cell growth and proliferation. Expression of adhesion molecule on glia (AMOG) is downregulated in human and mouse gliomas, suggesting that AMOG may be important for growth regulation in the brain. In this report, we examined the role of AMOG expression on cell growth and intracellular signal transduction. We show that AMOG does not negatively regulate cell growth in vitro or in vivo. Instead, expression of AMOG in AMOG-deficient cells results in a dramatic increase in cell size associated with protein kinase B/Akt hyperactivation, which occurs independent of phosphatidylinositol 3-kinase activation. AMOG-mediated Akt phosphorylation specifically activates the mTOR/p70S6 kinase pathway previously implicated in cell size regulation, but it does not depend on tuberous sclerosis complex/Ras homolog enriched in brain (Rheb) signaling. These data support a novel role for a glial adhesion molecule in cell size regulation through selective activation of the Akt/mTOR/S6K signal transduction pathway.  相似文献   

15.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

16.
17.
Defects in cell signaling pathways play a central role in cancer cell growth, survival, invasion and metastasis. An important goal of proteomics is to characterize and develop "circuit maps" of these signaling pathways in normal and diseased cells. We have used reverse-phase protein array technology coupled with laser capture microdissection and phospho-specific antibodies to examine the activation status of several key molecular "gates" involved in cell survival and proliferation signaling in human ovarian tumor tissue. The levels of activated extracellular-regulated kinase (ERK1/2) varied considerably in tumors of the same histotype, but no significant differences between histotypes were observed. Advanced stage tumors had slightly higher levels of phosphorylated ERK1/2 compared to early stage tumors. The activation status of Akt and glycogen synthase kinase 3beta, key proteins and indicators of the state of the phosphatidylinositol 3-kinase/Akt pro-survival pathway also showed more variation within each histotype than between the histotypes studied. Our results demonstrate the utility of reverse phase protein microarrays for the multiplexed analysis of signal transduction from discreet cell populations of cells procured directly from human ovarian tumor specimens and suggest that patterns in signal pathway activation in ovarian tumors may be patient-specific rather than type or stage specific.  相似文献   

18.
19.
粘附斑激酶(FAK)及其信号通路研究进展   总被引:3,自引:0,他引:3  
粘附斑激酶(focal adhesion kinase,FAK)是一类胞质非受体蛋白酪氨酸激酶,属于蛋白酪氨酸激酶(protein tyrosine kinase)超家族,因而也称为PTKⅡ.FAK在细胞信号转导中处于十分重要的位置,它是胞内外信号出入的中枢,介导多条信号通路.FAK可以整合来自整合素、生长因子以及机械刺激等的信号,激活胞内PI3K/Akt、Ras/MAPK等信号通路,调节细胞生长.FAK还与胚胎发育、肿瘤发生与迁移有关.  相似文献   

20.
Overexpression of epidermal growth factor receptor (EGFR) in certain cancers is well established. There is growing evidence that epidermal growth factor (EGF) activates Akt/protein kinase B (PKB) in a phosphoinositide 3-OH kinase (PI3K)-dependent manner, but it is not yet clear which Akt isoforms are involved in this signal transduction pathway. We investigated the functional regulation of three Akt isoforms, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, in esophageal cancer cells where EGFR is frequently overexpressed. Upon EGF simulation, phosphorylation of Akt1 at the Ser-473 residue was remarkably induced. This result was corroborated by in vitro Akt kinase assays using glycogen synthase kinase 3beta as the substrate. PI3K inhibitors, wortmannin or LY294002, significantly blocked the Akt kinase activity induced by EGF. Akt2 activity was evaluated by electrophoretic mobility shift assays. Robust activation of Akt2 by EGF was observed in some cell lines in a PI3K-dependent manner. EGF-induced Akt3 activation was demonstrated by Ser-472 phosphorylation of Akt3 but in a restrictive fashion. In aggregate, EGF-mediated activation of Akt isoforms is overlapping and distinctive. The mechanism by which EGFR recruits the PI3K/Akt pathway was in part differentially regulated at the level of Ras but independent of heterodimerization of EGFR with either ErbB2 or ErbB3 based upon functional dissection of pathways in esophageal cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号