首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf waxes of Andropogon hallii and A. scoparius contain hydrocarbons (2%, 2%), esters (4%, 2%), free acids (3%, 4%), free alcohols (1%, 0.2%, major component dotriacontanol) β-diketones (67%, 80%) and hydroxy β-diketones (16%, 5%). β-Diketones of A. hallii consist mainly of tritriacontane-12,14-dione and hentriacontane-12,14-dione (86:8) and of A. scoparius of tritriacontane-12,14-dione and hentriacontane-10,12-dione (67:29). Hydroxy β-diketones of A. hallii are composed mainly of 5-hydroxytritriacontane-12,14-dione and 5-hydroxy-hentriacontane-12,14-dione (90:8); wax of A. scoparius contains only 5-hydroxytritriacontane-12,14-dione. The hydroxyl group of the major hydroxy β-diketone has the R-configuration opposite to that of all previously described hydroxy β-diketones.  相似文献   

2.
Leaf wax of a glaucous variety of Poa ampla contains hydrocarbons (5%, C23–C35), esters (9%, C36–C56), free acids (3%, C16–C34), free alcohols (6%, mainly C26); hentriacontane-14,16-dione (14%), 5-oxohentriacontane-14,16-dione (1%); hydroxy β-diketones (56%) and unidentified material (6%). The hydroxy β-diketones, which are more abundant in this wax than in others, were shown by 13C NMR to consist of 4-hydroxy (15%), 5-hydroxy (70%) and 6-hydroxy (15%) hentriacontane-14,16-diones.  相似文献   

3.
Summary The synthesis and deposition of the epicuticular waxes in barley are determined by the eceriferum (cer) loci. On the uppermost internodes, leaf sheaths and spikes of the wild type Bonus, the -diketones and hydroxy--diketones (almost entirely hentriacontan-14,16-dione and 25-hydroxyhentriacontan-14,16-dione, respectively) are the predominating wax classes. In these same waxes esters containing alkan-2-ols (primarily tridecan-2-ol and pentadecan-2-ol) are present. Analyses of the -diketone content and ester composition of waxes from Bonus and eight cer mutants led to the hypothesis that these two wax classes are synthesized from common precursors, namely C14 and C16 chain elongation intermediates. Subsequently, decarboxylation with a simultaneous retention of the carbonyl groups in the -position would lead to the esterified alkan-2-ols while retention of two carbonyl groups plus further elongation would lead to the -diketones. This closer biosynthetic relationship of the -diketones to the esterified alkan-2-ols than to the other lipid classes-hydrocarbons, alkan-1-ol containing esters, aldehydes, alkan-1-ols and free acids—found in all barley waxes is illustrated schematically and the approximate sites of action of the cer loci indicated.  相似文献   

4.
Summary Five eceriferum, (cer) mutants in barley which influence -diketone and hydroxy--diketone synthesis in spike and internode epicuticular waxes have been characterized. The mutation cer-u 69 blocks the synthesis of hydroxy--diketones and leads to a compensatory increase in the amount of -diketones, indicating that -diketones are precursors of the hydroxy--diketones. Furthermore, highly lobed wax plates were observed for the first time on barley lemmas, in addition to the characteristic wax tubes. Both diketone classes are selectively and proportionally reduced in the spike wax of cer-i 16, which has shorter wax tubes. The three mutants cer-c 36, -q 42, and -c,u 108 synthesize neither diketone class and form no wax tubes. In contrast to the variable composition of most individual barley wax classes, only a single -diketone was identified, namely hentriacontan-14,16-dione.  相似文献   

5.
Epicuticular waxes from whole plants of Agropyron dasystachyum var. psammophylum, A. riparium and A. elongatum contain hydrocarbons (5–8 %), long chain esters (12–15%) and free acids (2–5%). The major esters are C34C56 esters derived from C16C30 acids and alcohols (1-hexacosanol is the major alcohol) but C31, C33 and C35 esters (3–11%) are also present. The latter esters are C18 and C20 acid esters of C13 and C15 2-alkanols. A. dasystachyum wax contains 2% free alcohols, that of A. riparium contains 17% and that of A. elongatum 11% (1-hexacosanol is the major alcohol in each). Diesters (2%), C8C12 diols esterified by (E)-2-alkenoic acids, are present in A. riparium wax. Hentriacontane-14,16-dione is present: 29% in A. dasystachyum wax and 32% in A. riparium wax, but only 5% in A. elongatum wax. 25-Oxohentriacontane-14,16-dione forms 14% of A. dasystachyum wax and 27% of A. elongatum wax but the oxo β-diketones of A. riparium wax (5%) consist of both 10-oxo- and 25-oxohentriacontane-14,16-diones in the ratio 4:1. Hydroxy β-diketones of the waxes are 25- and 26-hydroxyhentriacontane-14,16-diones; in A. dasystachyum (20%) the ratio is 3:1, in A. elongatum (20%) the ratio is 9:1 but in A. riparium (5%) it is ca 1:2. The configuration of the hydroxyl group in the 26-hydroxy β-diketone is opposite to that in the 25-hydroxy derivative. The unusual composition of the oxygenated β-diketones of A. riparium confirms that this species should be regarded as separate from A. dasystachyum. Wax from A. elongatum also contains 4-hydroxy-25-oxohentriacontane-14,16-dione (4%) and an unusual oxo-β-ketol, 18-hydroxy-7,16-hentriacontanedione (2%), both these components are probably derived biosynthetically from the 25-oxo β-diketone which is the major component of this wax. Syntheses of racemic 18-hydroxy-7,16-hentriacontanedione and of a model β-ketol, 12-hydroxy-10-pentacosanone, are described.  相似文献   

6.
Wax on leaves of rye and of hexaploid Triticale (60–70-day-old plants) contains hydrocarbons (6–8%), esters (10%), free alcohols (14-8%), free acids (3%), hentriacontane-14,16-dione (39–45%), 25 (S)-hydroxyhentriacontane-14,16-dione (13–11%) and unidentified (14–15%). Diesters (1–3%) are also present in rye wax. Compositions of hydrocarbons (C27-C33) and esters (C28,C58) are similar for both waxes. Free and combined alcohols of rye wax are mainly hexacosanol but alcohols of Triticale wax are mainly octacosanol. The composition of Triticale wax is close to that of its wheat parent Triticum durum (cv. Stewart 63). Esters of wax from ripe rye contain 58% of trans 2,3-unsaturated esters. *NRCC No. 14033.  相似文献   

7.
The glossy varieties (A14 and Jing 2001) and glaucous varieties (Fanmai 5 and Shanken 99) of wheat (Triticum aestivum L.) were selected for evaluation of developmental changes in the composition and morphology of cuticular waxes on leaves and spikes. The results provide us with two different wax development patterns between leaf and spike. The general accumulation trend of the total wax load on leaf and spike surfaces is first to increase and then decrease during the development growth period, but these changes were caused by different compound classes between leaf and spike. Developmental changes of leaf waxes were mainly the result of variations in composition of alcohols and alkanes. In addition, diketones were the third important contributor to the leaf wax changes in the glaucous varieties. Alkanes and diketones were the two major compound classes that caused the developmental changes of spike waxes. For leaf waxes, β- and OH-β-diketones were first detected in flag leaves from 200-day-old plants, and the amounts of β- and OH-β-diketones were significantly higher in glaucous varieties compared with glossy varieties. In spike waxes, β-diketone existed in all varieties, but OH-β-diketone was detectable only in the glaucous varieties. Unexpectedly, the glaucous variety Fanmai 5 yielded large amounts of OH-β-diketone. There was a significant shift in the chain length distribution of alkanes between early stage leaf and flag leaf. Unlike C28 alcohol being the dominant chain length in leaf waxes, the dominant alcohol chain length of spikes was C24 or C26 depending on varieties. Epicuticular wax crystals on wheat leaf and glume were comprised of platelets and tubules, and the crystal morphology changed constantly throughout plant growth, especially the abaxial leaf crystals. Moreover, our results suggested that platelets and tubules on glume surfaces could be formed rapidly within a few days.  相似文献   

8.
Wax on leaves of Agropyron intermedium contains hydrocarbons (11%, C27–C33), esters (11%, C32–C60), free alcohols (180%, C26) 25-oxohentriacontane-14,16-dione (17%), 10-oxohentriacontane-14,16-dione (5y%), 25-hydroxyhentriacontane-14,16-dione (12%) and 26-hydroxyhentriacontane-14,16-dione (2%). Wax on spikes contains additional components, C25–C33cis 9-alkenes (32% of hydrocarbons), and more β-diketones, 25-hydroxy (17%) and 26-hydroxy (3%) hentriacontane-14,16-diones, 10,25-dioxohentriacontane-14,16-dione (1%) and 4-hydroxy-25-oxo-(2%), 25-hydroxy-10-oxo-(1.3%) and 26-hydroxy-10-oxo-(0.7%) hentriacontane-14,16-diones; free alcohols were very minor components (1%, C24–C32).  相似文献   

9.
10.
Leaf and stem wax of Panicum virgatum contains hydrocarbons (4%), esters (3%), free acids (2%), free alcohols (1%), triterpene alcohols (2%), β-diketones (69%) and hydroxy β-diketones (6%). Principal free alcohols range in chain length from C26 to C32. β-Diketones consist almost entirely of tritriacontane-12,14-dione and the hydroxy β-diketone consists only of 5(S)-5-hydroxytritriacontane-12,14-dione. The configuration of the hydroxyl group is the same as that of hydroxy β-diketones from festucoid grasses but opposite to that of the hydroxy β-diketone from Andropogon species.  相似文献   

11.
Leaf waxes from spring wheat varieties Selkirk and Manitou contain hydrocarbons (6%, 10%), long chain esters (14%, 13%), free acids (5%, 8%), free alcohols (19%, 21%), β-diketone (16%, 20%), hydroxy β-diketones (8%, 10%), unidentified gum (29%, 16.5%) and minor amounts of diol diesters, glycerides and aldehydes. The major hydrocarbon is nonacosane and major esters are octacosyl esters of C14–C32 acids but C20 and C22 alcohol esters of trans 2-docosenoic and tetracosenoic acids are also present (Selkirk 20%, Manitou 10% of total esters). Previously unknown trans 2-docosen-1-ol is present as an ester (Selkirk 5%, Manitou 2.5% of total esters). Free acids are C14–C32 acids and trans 2-docosenoic and tetracosenoic acids (Selkirk 30%, Manitou 9% of free acids). Octacosanol is the principal free alcohol. Hentriacontane-14,16-dione is the β-diketone and the hydroxy β-diketones are a 1:1 mixture of 8- and 9- hydroxyhentriacontane-14,16-diones.  相似文献   

12.
[1-14C]acetate and [2-14C]acetate were incorporated into the β-diketones of barley spike epicuticular wax via the peduncle. Utilizing column chromatography with dry copper acetate, the β-diketones were isolated and the labeling pattern in the hentriacontan-14, 16-dione determined after its degradation. A modified iodoform procedure was used to give myristic and palmitic acids. Radio-gas chromatography was then performed on the products of chemical α-oxidation of the separated fatty acids. This procedure, in effect, gave the specific activity of every carbon atom of hentriacontan-14,16-dione except carbon-1 to carbon-5 (from myristic acid) and carbon-27 to carbon-31 (from palmitic acid) for each labeled substrate. The specific activity of carbon-15 was determined by an indirect method. On the basis of these data it is suggested that the hentriacontan-14,16-dione is synthesized from the carbon-31 end of the molecule by elongation as follows. C2 units are added, perhaps to a mixture of short chain precursors, to give a chain with 12 carbon atoms. This chain is then elongated to one with 16 carbon atoms so that the four added carbon atoms are uniformly labeled. Following this, the chain with 16 carbon atoms is elongated with C2 units to give the complete molecule. Possibly some change in mechanism occurs in this last elongation process when the chain is 22 carbon atoms long. Barley spike wax β-diketones contain about 2% nonacosan-13, 15-dione which seems to be synthesized in an analogous manner.  相似文献   

13.
The crystal structure of the epicuticular waxes of 35 plant species has been examined by electron diffraction and X-ray powder diffraction. The waxes include the most common morphological wax types such as platelets, tubules, films and rodlets. Most of them were prepared with a special mechanical isolation method, which preserves the original crystal structure. Solvent-extracted recrystallized plant waxes were compared with mechanically isolated samples. The waxes were found to occur in three different crystal structures. Most of the waxes exhibited an orthorhombic structure which is the most common for aliphatic compounds. Tubules containing mainly secondary alcohols showed diffraction reflections of a triclinic phase; broad reflection peaks indicated a significant disorder. Ketones, in particular beta-diketone tubules, displayed the reflections of a hexagonal structure. Mixtures of different phases could be identified. For most of the waxes, the 'long spacing' diffraction reflections indicated a layer structure with the characteristics of the major component. Others showed no 'long spacing' reflections indicating a strong disorder of the molecular layers.  相似文献   

14.
n-Alkanes, esters, aldehydes, free alcohols, -diketones and hydroxy--diketones were found to be the lipid components of the cuticular waxes of common wheat Chinese Spring (Triticum aestivum L.). The ditelosomic lines 7A-L and 7D-S showed a dramatic decrease in the amount of -diketones and hydroxy -diketones which are reduced to traces. The homologue composition within each class of compounds has also been determined for all three of the lines of wheat. The effects of chromosomal deficiencies have been demonstrated. Chromatographic techniques and mass spectrometry have been used for the separation and identification of the substances which compose the waxes. This study has provided further evidence of the role of genes situated on well defined chromosomes in determining the nature of classes of compounds composing wax and governing the homologous composition within each class of substances.  相似文献   

15.
Summary Wild type wheat (Triticum aestivum L.) and three mutant lines that have reduced glaucousness on the flag leaf sheath have been examined for variations in glaucousness, contact angles, wax chemistry and wax morphology. On the sheath and culm, organs that are glaucous in the wild type, increasing glaucousness is correlated with increasing contact angles, an increasing proportion of -diketones plus hydroxy--diketones in the was and an increasing proportion of wax tubes. Organs that were non-glaucous in all four lines, namely both surfaces of the vegetative leaves and the adaxial surface of the flag leaf, had high contact angles, a dense covering of wax plates and waxes rich in primary alcohols but devoid of -diketones and hydroxy--diketones. The abaxial surface of the flag leaf was the most complex of the organ surfaces studied. In the wild type the glaucousness of the sheath continued onto this surface for 1–2 cm and this was correlated with the other characters studied as it was on the sheath. In the mutants, however, the tubes were absent. Flat ribbons of varying widths, a new wax structure in wheat, as well as various types of plates were found instead. These structures continued to the flag leaf tip and were also present on the abaxial surface of the wild type flag leaf. Changes in contact angle at the tip could not be correlated with the other measured parameters.  相似文献   

16.
A scanning electron microscope study of 81 species of Plagiochilaceae revealed the presence of superficial waxes on the leaves and stems ofPlagiochilion mayebarae and 5 species ofPlagiochila. The waxes are not visible in the light microscope and were unknown in Plagiochilaceae.Plagiochila fuscolutea andP. longiramea (=P. sect.Fuscoluteae) are characterised by the predominant occurrence of membraneous wax platelets;Plagiochila aerea, P. rudischusteri andP. tabinensis(=P. sect.Bursatae) predominately form various types of wax rodlets. Our findings show for the first time the systematic usefulness of leaf surface waxes in the liverworts.P. tabinensis contains surface waxes in amounts of ca. 1.4% dry weight composing of steryl esters, triacylglycerols and free fatty acids.  相似文献   

17.
Cuticular waxes of Viscum album subspecies and of V. cruciatum have been examined for their micromorphology and chemical composition. Wax crystalloids occur preferably as irregular platelets and rodlets, while deviant structures are found in small areas. Among the triterpenoids forming the wax layer, oleanolic acid is prevailing with some 80%. The quantitative composition of the long-chain aliphatics, which comprise several classes, is rather variable. Flavonoid aglycones, occurring as very minor components of the cuticular waxes, comprise the flavonols kaempferol and quercetin and a series of their methyl derivatives, in some taxa also the flavanone naringenin. Neither the crystalloid structures nor the chemical composition of the wax allow to discriminate the 2 species, or male and female plants, or plants grown on conifers or on dicotyledoneous hosts.  相似文献   

18.

Key message

The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient in the cuticular wax component 14,16-hentriacontanedione. The mutated gene maps to a 1.3-cM interval on chromosome 3HL flanked by the genes MLOC_10972 and MLOC_69561.

Abstract

The cuticular wax coating of leaves and stems in many grass species is responsible for the plants’ glaucous appearance. A major component of the wax is a group of β-diketone compounds. The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient for the compound 14,16-hentriacontanedione. A linkage analysis based on 708 gametes allowed the gene responsible for the mutant phenotype to be mapped to a 1.3-cM interval on chromosome 3HL flanked by the two genes MLOC_10972 and _69561. The product of the wild type allele may represent a step in the β-diketone synthesis pathway.
  相似文献   

19.
Epidermal surfaces of about 500 species from some 250 genera of centrospermous families plus some possibly related families were examined by scanning electron microscopy. The micromorphology of their epicuticular waxes is described under taxonomic aspects. In general, Centrosperms tend to develop wax platelets on their cuticle. Shape and size of these platelets are highly diverse, but specific for some taxa. Particular forms of rodlets and thick wax plates occur only in few taxa. The systematic and taxonomic applicability of wax micromorphology is limited, but tentatively family characterizations are given. The data presented provide additional information concerning the familiar and suprafamiliar classification ofCaryophyllales. Dedicated to the enthusiast of succulent Centrosperms, Prof. DrK. E. Wohlfarth-Bottermann (Director of the Institute of Cytology and Micromorphology, University of Bonn) on the occasion of his 65th birthday in May 1988.  相似文献   

20.
Cuticular waxes coat aerial plant surfaces to protect tissues against biotic and abiotic stress. The waxes are complex mixtures of fatty-acid-derived lipids formed on modular biosynthetic pathways, with varying chain lengths and oxygen functional groups. The waxes of most plant species contain C26–C32 alcohols, aldehydes, alkanes, and fatty acids together with their alkyl esters, and comparisons between diverse wax mixtures have revealed matching chain length distributions between some of these compound classes. Based on such patterns, the biosynthetic pathways leading to the ubiquitous wax constituents were hypothesized early on, and most of these pathway hypotheses have since been confirmed by biochemical and molecular genetic studies in model species. However, the most abundant wax compounds on many species, including many important crop species, contain secondary functional groups and thus their biosynthesis differs at least in part from the ubiquitous wax compounds with which they co-occur. Here, we survey the chemical structures of these species-specific specialty wax compounds based on a comprehensive CAS SciFinder search and then review relevant reports on wax compositions to help develop and refine hypotheses for their biosynthesis. Across the plant kingdom, specialty wax compounds with one, two, and three secondary functional groups have been identified, with most studies focusing on Angiosperms. Where multiple specialty wax compounds were reported, they frequently occurred as homologous series and/or mixtures of isomers. Among these, it is now possible to recognize series of homologs with predominantly odd- or even-numbered chain lengths, and mixtures of isomers with functional groups on adjacent or on alternating carbon atoms. Using these characteristic molecular geometries of the co-occurring specialty compounds, they can be categorized and, based on the common structural patterns, mechanisms of biosynthesis may be predicted. It seems highly likely that mixtures of isomers with secondary functions on adjacent carbons arise from oxidation catalyzed by P450 enzymes, while mixtures of isomers with alternating group positions are formed by malonate condensation reactions mediated by polyketide synthase or ketoacyl-CoA synthase enzymes, or else by the head-to-head condensation of long-chain acyls. Though it is possible that some enzymes leading to ubiquitous compounds also participate in specialty wax compound biosynthesis, comparisons between co-occurring ubiquitous and specialty wax compounds strongly suggest that, at least in some species, dedicated specialty wax compound machinery exists. This seems particularly true for the diverse species in which specialty wax compounds, most notably nonacosan-10-ol, hentriacontan-16-one (palmitone), and very-long-chain β-diketones, accumulate to high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号