首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the possible role of basic residues in H+ translocation through vacuolar-type H+-pumping pyrophosphatases (V-PPases), conserved arginine and lysine residues predicted to reside within or close to transmembrane domains of an Arabidopsis thaliana V-PPase (AVP1) were subjected to site-directed mutagenesis. One of these mutants (K461A) exhibited a “decoupled” phenotype in which proton-pumping but not hydrolysis was inhibited. Similar results were reported previously for an E427Q mutant, resulting in the proposal that E427 might be involved in proton translocation. However, the double mutant E427K/K461E has a wild type phenotype, suggesting that E427 and K461 form a stabilising salt bridge, but that neither residue plays a critical role in proton translocation.  相似文献   

2.
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.  相似文献   

3.
Certain mutations within the protective antigen (PA) moiety of anthrax toxin endow the protein with a dominant-negative (DN) phenotype, converting it into a potent antitoxin. Proteolytically activated PA oligomerizes to form ring-shaped heptameric complexes that insert into the membrane of an acidic intracellular compartment and promote translocation of bound edema factor and/or lethal factor to the cytosol. DN forms of PA co-oligomerize with the wild-type protein and block the translocation process. We prepared and characterized 4 DN forms: a single, a double, a triple, and a quadruple mutant. The mutants were made by site-directed mutation of the cloned form of PA in Escherichia coli and tested by various assays conducted on CHO cells or in solution. All 4 mutant PAs were competent for heptamerization and ligand binding but were defective in the pH-dependent functions: pore formation, ability to convert to the SDS-resistant heptamer, and ability to translocate bound ligand. The single mutant (F427K) showed less attenuation than the others in the pH-dependent functions and lower DN activity in a CHO cell assay. The quadruple (K397D + D425K + F427A + 2beta2-2beta3) deletion showed the most potent DN activity at low concentrations but also gave indications of low stability in a urea-mediated unfolding assay. The double mutant (K397D + D425K) and the triple (K397D + D425K + F427A) showed strong DN activity and slight reduction in stability relative to the wild-type protein. The properties of the double and the triple mutants make these forms worthy of testing in vivo as a new type of antitoxic agent for treatment of anthrax.  相似文献   

4.
A putative transport protein (Orf9) of alkaliphilic Bacillus pseudofirmus OF4 belongs to a transporter family (CPA-2) of diverse K+ efflux proteins and cation antiporters. Orf9 greatly increased the concentration of K+ required for growth of a K+ uptake mutant of Escherichia coli. The cytoplasmic K+ content of the cells was reduced, consistent with an efflux mechanism. Orf9-dependent translocation of K+ in E. coli is apparently bidirectional, since ammonium-sensitive uptake of K+ could be shown in K+ -depleted cells. The upstream gene product Orf8 has sequence similarity to a subdomain of KTN proteins that are associated with potassium-translocating channels and transporters; Orf8 modulated the transport capacities of Orf9. No Orf9-dependent K+(Na+)/H+ antiport activity was found in membrane vesicles. Nonpolar deletion mutants in the orf9 locus of the alkaliphile chromosome exhibited no K+ -related phenotype but showed profound phenotypes in medium containing high levels of amine-nitrogen. Their patterns of growth and ammonium content suggested a physiological role for the orf9 locus in bidirectional ammonium transport. Orf9-dependent ammonium uptake was observed in right-side-out membrane vesicles of the alkaliphile wild type and the mutant with an orf8 deletion. Uptake was proton motive force dependent and was inhibited by K+. Orf9 is proposed to be designated AmhT (ammonium homeostasis). Ammonium homeostasis is important in high-amine-nitrogen settings and is particularly crucial at high pH since cytosolic ammonium accumulation interferes with cytoplasmic pH regulation. Endospore formation in amino-acid-rich medium was significantly defective and germination was modestly defective in the orf9 and orf7-orf10 deletion mutants.  相似文献   

5.
Sellers VM  Wu CK  Dailey TA  Dailey HA 《Biochemistry》2001,40(33):9821-9827
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.  相似文献   

6.
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.  相似文献   

7.
Proton translocation coupled to the reduction of nitrite was studied in anaerobically grown Escherichia coli. Extrusion of protons occurred by adding nitrite to an anaerobic suspension of wild-type cells. This extrusion was sensitive to a proton conductor, 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone. Dicyclohexylcarbodiimide, an inhibitor of H+-ATPase, prevented the proton extrusion linked to nitrite reduction, whereas this reagent had no effect on respiratory nitrate reduction to nitrite. Proton extrusion was undetectable when nitrite was added to a suspension of mutant cells defective in H+-ATPase. These results indicate that the proton extrusion associated with nitrite reduction to ammonia is not by redox pumps but by H+-ATPase. From the results obtained by the measurement of proton extrusion in nitrite reductase-deficient mutants, NADH-nitrite reductase system is suggested to involve the proton extrusion in whole cells of E. coli.  相似文献   

8.
The abilities of two bacterial active heme transporters, HmbR of Neisseria meningitidis and HemR of Yersinia enterocolitica, to use different heme sources were compared. While HmbR-expressing cells used only hemoglobin (Hb) and heme, HemR-expressing bacteria were able to grow on Hb, heme, myoglobin, hemopexin, catalase, human and bovine serum albumin-heme, and haptoglobin-hemoglobin complexes as sources of iron. Expression of functional HemR allowed Escherichia coli cells to respond to heme-containing peptides, microperoxidases MP-8, MP-9, and MP-11, suggesting the ability of HemR to transport heme covalently linked to other molecules. Comparison of HemR with other heme receptors identified several highly conserved histidine residues as well as two conserved amino acid motifs, the FRAP and NPNL boxes. A site-directed mutagenesis approach was used to investigate the roles of His128, His192, His352, and His461 residues in HemR function. The HemR receptor with histidine changed to lysine at position 128 (HemR(H128K)), HemR(H461L), HemR(H461A), and HemR(H128A,H461A) mutant receptors were unable to use Hb, human serum albumin-heme, and myoglobin as sources of porphyrin and iron. Utilization of free heme was also severely affected, with some residual heme uptake in cells expressing HemR(H128K), HemR(H461A), and HemR(H461L). Conversely, the HemR(H192T), HemR(H352A), HemR(H352K), and HemR(H192T,H352K) mutant receptors were fully functional. All mutant HemR proteins were expressed in the outer membrane at levels similar to that of the wild-type HemR receptor. Nonfunctional HemRs were able to bind heme- and Hb-agarose. A hypothetical model of the HemR function in which two conserved histidine residues, His128 and His461, participate in the transport of heme through the receptor pore is postulated.  相似文献   

9.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

10.
Transhydrogenase couples hydride transfer between NADH and NADP+ to proton translocation across a membrane. The binding of Zn2+ to the enzyme was shown previously to inhibit steps associated with proton transfer. Using Zn K-edge X-ray absorption fine structure (XAFS), we report here on the local structure of Zn2+ bound to Escherichia coli transhydrogenase. Experiments were performed on wild-type enzyme and a mutant in which βHis91 was replaced by Lys (βH91K). This well-conserved His residue, located in the membrane-spanning domain of the protein, has been suggested to function in proton transfer, and to act as a ligand of the inhibitory Zn2+. The XAFS analysis has identified a Zn2+-binding cluster formed by one Cys, two His, and one Asp/Glu residue, arranged in a tetrahedral geometry. The structure of the site is consistent with the notion that Zn2+ inhibits proton translocation by competing with H+ binding to the His residues. The same cluster of residues with very similar bond lengths best fits the spectra of wild-type transhydrogenase and βH91K. Evidently, βHis91 is not directly involved in Zn2+ binding. The locus of βHis91 and that of the Zn-binding site, although both on (or close to) the proton-transfer pathway of transhydrogenase, are spatially separate.  相似文献   

11.
Massanz C  Friedrich B 《Biochemistry》1999,38(43):14330-14337
The role of amino acid residues in the H(2)-activating subunit (HoxH) of the NAD-reducing hydrogenase (SH) from Alcaligenes eutrophus has been investigated by site-directed mutagenesis. Conserved residues in the N-terminal L1 (RGxE) and L2 (RxCGxCx(3)H) and the C-terminal L5 (DPCx(2)Cx(2)H/R) motifs of the active site-harboring subunit were chosen as targets. Crystal structure analysis of the [NiFe] hydrogenase from Desulfovibrio gigas uncovered two pairs of cysteines (motifs L2 and L5) as coordinating ligands of Ni and Fe. Glutamate (L1) and histidine residues (L2 and L5) were proposed as being involved in proton transfer [Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla Camps, J. C. (1995) Nature 373, 580-587]. The A. eutrophus mutant proteins fell into three classes. (i) Replacement of the putative four metal-binding cysteines with serine led to the loss of H(2) reactivity and blocked the assembly of the holoenzyme. Exchange of Cys62, Cys65, or Cys458 was accompanied by the failure of the HoxH subunit to incorporate nickel, supporting the essential function of these residues in the formation of the active site. Although the fourth mutant of this class (HoxH[C461S]) exhibited nickel binding, the modified protein was catalytically inactive and unable to oligomerize. (ii) Mutations in residues possibly involved in proton transfer (HoxH[E43V], HoxH[H69L], and HoxH[H464L]) yielded Ni-containing proteins with residual low levels of hydrogenase activity. (iii) The most promising mutant protein (HoxH[R40L]), which was identified as a metal-containing tetrametric enzyme, was completely devoid of H(2)-dependent oxidoreductase activity but exhibited a remarkably high level of D(2)-H(+) exchange activity. These characteristics are compatible with the interpretation of a functional proton transfer uncoupled from the flow of electrons.  相似文献   

12.
Hui EK  Barman S  Yang TY  Nayak DP 《Journal of virology》2003,77(12):7078-7092
Influenza type A virus matrix (M1) protein possesses multiple functional motifs in the helix 6 (H6) domain (amino acids 91 to 105), including nuclear localization signal (NLS) (101-RKLKR-105) involved in translocating M1 from the cytoplasm into the nucleus. To determine the role of the NLS motif in the influenza virus life cycle, we mutated these and the neighboring sequences by site-directed mutagenesis, and influenza virus mutants were generated by reverse genetics. Our results show that infectious viruses were rescued by reverse genetics from all single alanine mutations of amino acids in the H6 domain and the neighboring region except in three positions (K104A and R105A within the NLS motif and E106A in loop 6 outside the NLS motif). Among the rescued mutant viruses, R101A and R105K exhibited reduced growth and small-plaque morphology, and all other mutant viruses showed the wild-type phenotype. On the other hand, three single mutations (K104A, K105A, and E106A) and three double mutations (R101A/K102A, K104A/K105A, and K102A/R105A) failed to generate infectious virus. Deletion (Delta YRKL) or mutation (4A) of YRKL also abolished generation of infectious virus. However, replacement of the YRKL motif with PTAP or YPDL as well as insertion of PTAP after 4A mutation yielded infectious viruses with the wild-type phenotype. Furthermore, mutant M1 proteins (R101A/K102A, Delta YRKL, 4A, PTAP, 4A+PTAP, and YPDL) when expressed alone from cloned cDNAs were only cytoplasmic, whereas the wild-type M1 expressed alone was both nuclear and cytoplasmic as expected. These results show that the nuclear translocation function provided by the positively charged residues within the NLS motif does not play a critical role in influenza virus replication. Furthermore, these sequences of H6 domain can be replaced by late (L) domain motifs and therefore may provide a function similar to that of the L domains of other negative-strand RNA and retroviruses.  相似文献   

13.
Analysis of the amino acid sequences of subunits NuoM and NuoN in the membrane domain of Complex I revealed a clear common pattern, including two lysines that are predicted to be located within the membrane, and which are important for quinone reductase activity. Site-directed mutations of the amino acid residues E144, K234, K265 and W243 in this pattern were introduced into the chromosomal gene nuoM of Escherichia coli Complex I. The activity of mutated Complex I was studied in both membranes and in purified Complex I. The quinone reductase activity was practically lost in K234A, K234R and E144A, decreased in W243A and K265A but unchanged in E144D. Complex I from all these mutants contained 1 mol tightly bound ubiquinone per mol FMN like wild type enzyme. The mutant enzymes E144D, W243A and K265A had wild type sensitivity to rolliniastatin and complete proton-pumping efficiency of Complex I. Remarkably, the subunits NuoL and NuoH in the membrane domain also appear to contain conserved lysine residues in transmembrane helices, which may give a clue of the mechanism of proton translocation. A tentative principle of proton translocation by Complex I is suggested based on electrostatic interactions of lysines in the membrane subunits.  相似文献   

14.
The transposon Tn10-encoded tetA gene product is a metal-tetracycline/proton antiporter (Yamaguchi, A., Udagawa, T., and Sawai, T. (1990) J. Biol. Chem. 265, 4809-4813). Its tetracycline transport activity was inhibited by a histidine-specific reagent, diethyl pyrocarbonate. Among five histidine residues in this antiporter, only His257 is located in the putative transmembrane helices. Thus, His257 was replaced by Glu or Asp. Inverted vesicles containing the Glu257 and Asp257 mutant proteins showed only 20 and 10% of the tetracycline uptake of wild-type vesicles, respectively. In contrast to wild-type vesicles, the mutant vesicles showed no tetracycline-dependent proton translocation, indicating that the mutant proteins had lost the tetracycline/H+ antiport activity. The significant 60Co2+ uptake without proton translocation by the mutant vesicles also confirmed that the mutant carriers act as uniporters of a metal-tetracycline complex. The metal-tetracycline uniport by the mutant proteins was not inhibited by diethyl pyrocarbonate, indicating that His257 is the only histidine residue essential for proton translocation. These mutant proteins conferred about half-level resistance to tetracycline, probably due to their catalyzing downhill efflux of a metal-tetracycline complex out of the cells.  相似文献   

15.
The membrane-bound proton pumping inorganic pyrophosphate synthase/pyrophosphatase (H(+)-PPi synthase/H(+)-PPase) from the photosynthetic bacterium Rhodospirillum rubrum was functionally expressed in Escherichia coli C43(DE3) cells. Based on a new topology model of the enzyme, charged residues predicted to be located near or within the membrane were selected for site-directed mutagenesis. Several of these mutations resulted in an almost complete inactivation of the enzyme. Four mutated residues appear to show a selective impairment of proton translocation and are thus likely to be involved in coupling pyrophosphate hydrolysis with electrogenic proton pumping. Two of these mutations, R176K and E584D, caused increased tolerance to salt. In addition, the former mutation caused an increased K(m) of one order of magnitude for the hydrolysis reaction. These results and their possible implications for the enzyme function are discussed.  相似文献   

16.
Cytochrome c oxidase (CcO) converts the energy from redox and oxygen chemistry to support proton translocation and create a transmembrane DeltamuH(+) used for ATP production. Molecular dynamics (MD) simulations were carried out to probe for the formation water chains capable of participating in proton translocation. Attention was focused on the region between and above the a and a(3) hemes where well-defined water chains have not been identified in crystallographic studies. An arginine (R481) (Rhodobacter sphaeroides numbering), positioned between the D-propionates of the hemes, had been mutated in vivo to lysine and showed to have altered activity consistent with an altered proton conductance [Qian, J., Mills, D. A., Geren, L., Wang, K. F., Hoganson, C. W., Schmidt, B., Hiser, C., Babcock, G. T., Durham, B., Millett, F., and Ferguson-Miller, S. (2004) Role of the conserved arginine pair in proton and electron transfer in cytochrome c oxidase, Biochemistry 43, 5748-5756; also see the accompanying paper by Mills et al.]. This mutant was created in silico, and the MD results for the mutant and wild type were compared to explore the effects on the formation of hydrogen-bonded water chains by this mutation. The simulations reveal the presence of hydrogen-bonded water chains that lead from E286 through the region above the hemes to the Mg(2+), and from E286 to the heme a(3) D-propionate and the binuclear center. The R481K mutant does not form as many, or as extensive, water chains as wild-type CcO, due to a new conformation of residues in a large loop between helices III and IV in subunit I, indicating a reduction in the level of water chain formation in the mutant. This loop appears to play a role in controlling the formation of hydrogen-bonded water chains above the hemes. The results suggest a possible gating mechanism for proton movement that includes key residues W172 and Y175 on the loop and F282 on helix VI.  相似文献   

17.
Tao Z  Grewer C 《Biochemistry》2005,44(9):3466-3476
Transmembrane glutamate transport by the excitatory amino acid carrier (EAAC1) is coupled to the cotransport of three Na(+) ions and one proton. Previously, we suggested that the mechanism of H(+) cotransport involves protonation of the conserved glutamate residue E373. However, it was also speculated that the cotransported proton is shared in a H(+)-binding network, possibly involving the conserved histidine 295 in the sixth transmembrane domain of EAAC1. Here, we used site-directed mutagenesis together with pre-steady-state electrophysiological analysis of the mutant transporters to test the protonation state of H295 and to determine its involvement in proton transport by EAAC1. Our results show that replacement of H295 with glutamine, an amino acid residue that cannot be protonated, generates a fully functional transporter with transport kinetics that are close to those of the wild-type EAAC1. In contrast, replacement with lysine results in a transporter in which substrate binding and translocation are dramatically inhibited. Furthermore, it is demonstrated that the effect of the histidine 295 to lysine mutation on the glutamate affinity is caused by its positive charge, since wild-type-like affinity can be restored by changing the extracellular pH to 10.0, thus partially deprotonating H295K. Together, these results suggest that histidine 295 is not protonated in EAAC1 at physiological pH and, thus, does not contribute to H(+) cotransport. This conclusion is supported by data from H295C-E373C double mutant transporters which demonstrate that these residues cannot be linked by oxidation, indicating that H295 and E373 are not close in space and do not form a proton binding network. A kinetic scheme is used to quantify the results, which includes binding of the cotransported proton to E373 and binding of a modulatory, nontransported proton to the amino acid side chain in position 295.  相似文献   

18.
Homology modeling of gastric H,K-ATPase based on the E2 model of sarcoplasmic reticulum Ca2+-ATPase (Toyoshima, C., and Nomura, H. (2002) Nature 392, 835-839) revealed the presence of a single high-affinity binding site for K+ and an E2 form-specific salt bridge between Glu820 (M6) and Lys791 (M5). In the E820Q mutant this salt bridge is no longer possible, and the head group of Lys791, together with a water molecule, fills the position of the K+ ion and apparently mimics the K+-filled cation binding pocket. This gives an explanation for the K+-independent ATPase activity and dephosphorylation step of the E820Q mutant (Swarts, H. G. P., Hermsen, H. P. H., Koenderink, J. B., Schuurmans Stekhoven, F. M. A. H., and De Pont, J. J. H. H. M. (1998) EMBO J. 17, 3029-3035) and, indirectly, for its E1 preference. The model is strongly supported by a series of reported mutagenesis studies on charged and polar amino acid residues in the membrane domain. To further test this model, Lys791 was mutated alone and in combination with other crucial residues. In the K791A mutant, the K+ affinity was markedly reduced without altering the E2 preference of the enzyme. The K791A mutation prevented, in contrast to the K791R mutation, the spontaneous dephosphorylation of the E820Q mutant as well as its conformational equilibrium change toward E1. This indicates that the salt bridge is essential for high-affinity K+ binding and the E2 preference of H,K-ATPase. Moreover, its breakage (E820Q) can generate a K+-insensitive activity and an E1 preference. In addition, the study gives a molecular explanation for the electroneutrality of H,K-ATPases.  相似文献   

19.
Liliya Euro 《BBA》2008,1777(9):1166-1172
Analysis of the amino acid sequences of subunits NuoM and NuoN in the membrane domain of Complex I revealed a clear common pattern, including two lysines that are predicted to be located within the membrane, and which are important for quinone reductase activity. Site-directed mutations of the amino acid residues E144, K234, K265 and W243 in this pattern were introduced into the chromosomal gene nuoM of Escherichia coli Complex I. The activity of mutated Complex I was studied in both membranes and in purified Complex I. The quinone reductase activity was practically lost in K234A, K234R and E144A, decreased in W243A and K265A but unchanged in E144D. Complex I from all these mutants contained 1 mol tightly bound ubiquinone per mol FMN like wild type enzyme. The mutant enzymes E144D, W243A and K265A had wild type sensitivity to rolliniastatin and complete proton-pumping efficiency of Complex I. Remarkably, the subunits NuoL and NuoH in the membrane domain also appear to contain conserved lysine residues in transmembrane helices, which may give a clue of the mechanism of proton translocation. A tentative principle of proton translocation by Complex I is suggested based on electrostatic interactions of lysines in the membrane subunits.  相似文献   

20.
Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号