首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decondensation of compact and inactive sperm chromatin by egg cytoplasm at fertilization is necessary to convert the male germ cell chromatin to an active somatic form. We studied decondensation of sea urchin sperm nuclei in a cell-free extract of sea urchin eggs to define conditions promoting decondensation. We find that egg cytosol specifically phosphorylates two sperm-specific (Sp) histones in vitro in the same regions as in vivo. This activity is blocked by olomoucine, an inhibitor of cdc2-like kinases, but not by chelerythrine, an inhibitor of protein kinase C (PKC). PKC phosphorylates and solubilizes the sperm nuclear lamina, one requirement for decondensation. Olomoucine, which does not inhibit lamina removal, blocks sperm nuclear decondensation in the same concentration range over which it is effective in blocking Sp histone phosphorylation. In a system free of other soluble proteins, neither PKC nor cdc2 alone elicit sperm chromatin decondensation, but the two act synergistically to decondense sperm nuclei. We conclude that two kinases activities are sufficient for sea urchin male pronuclear decondensation in vitro, a lamin kinase (PKC) and a cdc2-like Sp histone kinase.  相似文献   

2.
Sea urchin and sea star oocyte extracts contain proteolytic activities that are active against sperm basic nuclear proteins (SNBP). This SNBP degradation has been related to the decondensation of sperm chromatin as a possible model to male pronuclei formation. We have studied the presence of this proteolytic activity in Holothuria tubulosa (sea cucumber) and its possible relationship with sperm nuclei decondensation. The mature oocyte extracts from H. tubulosa contain a proteolytic activity to SNBP located in the macromolecular fraction of the egg‐jelly layer. SNBP degradation occurred both on sperm nuclei and on purified SNBP, histones being more easily degraded than protein Øo (sperm‐specific protein). SNBP degradation was found to be dependent on concentration, incubation time, presence of Ca2+, pH, and this activity could be a serine‐proteinase. Thermal denaturalization of the oocyte extracts (80°C, 10–15 min) inactivates its proteolytic activity on SNBP but does not affect sperm nuclei decondensation. These results would suggest that sperm nuclei decondensation occurs by a mechanism different from SNBP degradation. Thus, the sperm nuclei decondensation occurs by a thermostable factor(s) and the removal of linker SNBP (H1 and protein Øo) will be a first condition in the process of sperm chromatin remodeling.  相似文献   

3.
Treatment of bull spermatozoa with DDC--Na/dithiothreitol results in the swelling and decondensation of nuclear chromatin. The structures formed at the final stages of decondensation are morphologically similar to the male pronucleus. Cytophotometric analysis has shown that decondensation of chromatin in the gametes in followed by quantitative changes of basic nuclear proteins. In partly--decondensed sperm nuclei the intensity of histone staining increases as a result of the appearance of extra reactive groups. In fully decondensed nuclei there remain only 54% of histones of the original haploid level. Nucleoproteins revealed in the sperm with fully dispersed chromatin must be histones of the somatic type.  相似文献   

4.
Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.  相似文献   

5.
The cation-dependent solubilization of rat thymocyte chromatin has been compared with decondensation of the nuclei as a function of sodium phosphate-mediated changes in the concentration of Mg2+ and Na+. After digestion of the nuclei with DNase I or Micrococcus nuclease for a time just sufficient to permit extraction of a maximal amount of chromatin (minimum digestion), solubilization of most of the chromatin was found to occur with the same cation dependency as decondensation of untreated nuclei, while further digestion changed the ionic requirements for solubilization. The cation-dependency of the chromatin solubility and of the nuclear decondensation also exhibited the same variations with temperature. The chromatin in the nuclei became up to 4-times more sensitive to DNase I by decondensation, which also induced a shift in the DNase I cleavage mode from a 200 bp to a 100 bp repeat pattern. In contrast, the sensitivity to Micrococcus nuclease appeared to be nearly unchanged. These results suggest that solubilization of chromatin prepared by a mild endonuclease treatment occurs as a direct consequence of structural changes in the chromatin which take place during decondensation of the nuclei.  相似文献   

6.
We report heparin-induced decondensation of human, mouse, and bull sperm nuclei. Decondensation did not occur if the spermatozoa were intact but only if the membranes were severely damaged by freezing and thawing or by treatment with a detergent. If a disulphide bond reducing agent (thiol) was absent, decondensation of human sperm nuclei was usually a relatively slow process, with large interindividual variation. Mouse and bull sperm nuclei did not decondense in the absence of a thiol. With a thiol relatively low concentrations of heparin induced a rapid decondensation of the sperm nuclei of all three species. The decondensation activity was not specific for heparin; other polyanions were also active, with heparin being the most effective compound. It is supposed that heparin and other polyanions induce sperm nuclear decondensation because they deplete protamines from the chromatin. Thus the negatively charged phosphate groups of the DNA are no longer opposed by positively charged protamines. Consequently the mutual repulsion of unopposed phosphate groups causes the DNA molecules to stretch, which results in an increase of the sperm nuclear volume. Since heparin and other polyanions induce decondensation under physiological pH and temperature, polyanions might also be active in the oocyte.  相似文献   

7.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

8.
Male pronucleus formation involves sperm nucleus decondensation and sperm chromatin remodeling. In sea urchins, male pronucleus decondensation was shown to be modulated by protein kinase C and a cdc2-like kinase sensitive to olomoucine in vitro assays. It was further demonstrated that olomoucine blocks SpH2B and SpH1 phosphorylation. These phosphorylations were postulated to participate in the initial steps of male chromatin remodeling during male pronucleus formation. At final steps of male chromatin remodeling, all sperm histones (SpH) disappear from male chromatin and are subsequently degraded by a cysteine protease. As a result of this remodeling, the SpH are replaced by maternal histone variants (CS). To define if sperm nucleus decondensation is coupled with sperm chromatin remodeling, we have followed the loss of SpH in zygotes treated with olomoucine. SpH degradation was followed with anti-SpH antibodies that had no cross-reactivity with CS histone variants. We found that olomoucine blocks SpH1 and SpH2B phosphorylation and inhibits male pronucleus decondensation in vivo. Interestingly, the normal schedule of SpH degradation remains unaltered in the presence of olomoucine. Taken together these results, it was concluded that male nucleus decondensation is uncoupled from the degradation of SpH associated to male chromatin remodeling. From these results, it also emerges that the phosphorylation of SpH2B and SpH1 is not required for the degradation of the SpH that is concurrent to male chromatin remodeling.  相似文献   

9.
Reactivation and reinitiation of DNA replication in quiescent frog erythrocyte nuclei has been analyzed following incubation in extracts prepared from activated Xenopus eggs. Nuclear decondensation and DNA synthesis only occurred if nuclei were pretreated with low doses of trypsin. This protease treatment did not digest histones, but did degrade several nonhistone proteins. Activated erythrocyte nuclei swell and begin DNA synthesis by 30 min after being mixed with the egg extract. In some extracts virtually complete genome replication was achieved in all nuclei after 2-3 hr. Addition of several protease inhibitors during sperm nuclear isolation significantly reduced the template efficiency of these preparations. We concluded that proteolytic alteration of nonhistone nuclear structural proteins may be a general mechanism which permits quiescent nuclei to reenter the replication cycle. Erythrocyte nuclei and egg extracts provide an excellent experimental system in which to investigate the processes of nuclear reactivation.  相似文献   

10.
Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain approximately 12 microM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.  相似文献   

11.
Due to the highly folded chromatin in human sperm, a proper nuclear swelling was highly required to localize certain DNA inside the sperm nuclei. Therefore, previous method for denaturation of sperm chromatin had to adopt chemical agents of decondensation treatment using Heparin/DTT or LIS, directly applied into the sperm cell before further examinations by FISH. Nevertheless, authors still had questions arising on the efficiency of decondensation process which is directly related to the quality of fluorescence signals, which, in turn, underlies the reliability of the results in frequencies and compositions as that still not a proper solution to overcome the major limitation in sperm studies. In this study, we approached a newly improved denaturation process of sperm chromatin without undergoing decondensation treatments that intact human sperms were used as the first time to localize examined DNA, and also two rounds of sequential FISH was carried out in the same sperm cell for the first time to investigate an idea of nullisomy of given chromosomes. From the results, all the variable centromeric compositions of sperm chromosomes 7, 8, and sex chromosomes revealed with significantly given frequencies of monosomy, disomy and nullisomy. Moreover, nullisomy was identified as a true absence of given chromosome rather than technical error of hybridization failure under decondensation. From the findings by our modified denaturation of human sperm chromatin without undergoing decondensation treatment, we strongly believe that more advanced and deep studies in human sperm of nuclear architecture and frequencies can be progressed with significantly reliable results.  相似文献   

12.
We have used an in vitro assay to study the induction of DNA synthesis by cytoplasmic extracts from the actively growing cell line Molt 4 in nuclei isolated from quiescent human lymphocytes. The TTP incorporation which takes place in these nuclei has been shown to be inhibitable by serine protease inhibitors, particularly aprotinin. This DNA synthesis has also been proposed to reflect the initiation of true DNA replication; however, we find evidence that much, if not most, of this incorporation is due to nonreplicative synthesis initiated on primer templates formed by calcium-dependent activation of the nuclear chromatin substrate. The principal DNA polymerase supplied by the Molt 4 extract appears to be polymerase alpha and the results show that the activated chromatin is a substrate for purified bacterial DNA polymerases. DNA synthesis is significantly enhanced by preincubation at 37 degrees C in the presence of calcium, and the almost complete inhibition of DNA synthesis induced by extracts or bacterial polymerases in the presence of T4 ligase suggests that this chromatin activation involves calcium-dependent endonucleases. Nevertheless, DNA synthesis in the isolated nuclei, with both Molt 4 extracts and bacterial polymerases, is substantially inhibited by addition of serine protease inhibitors, with aprotinin the most potent of those tested on a molar basis. Thus, the results suggest that specific proteolytic activity is required before nicked or damaged nuclear DNA can serve as an acceptable substrate for DNA polymerase activity.  相似文献   

13.
Reactivation of chicken erythrocyte nuclei for DNA replication in Xenopus egg extracts involves two phases of chromatin remodelling: a fast decondensation leading to a small volume increase and chromatin dispersion occurring within a few minutes (termed stage I decondensation), followed by a slower membrane-dependent decondensation and enlargement of up to 40-fold from the initial volume (stage II decondensation). Chromatin decondensation as measured by nuclear swelling and micrococcal nuclease digestion required ATP. We observed a characteristic change in the phosphorylation pattern of erythrocyte proteins upon incubation in egg extract. While histones H5, H2A, and H4 became selectively phosphorylated during decondensation, the phosphorylation of histone H3 and of several nonhistone proteins was prevented. Furthermore, histone H5 was selectively released from erythrocyte nuclei in an energy-dependent reaction. These molecular changes already occurred during stage I decondensation and they persisted during stage II decondensation. DNA replication was confined to nuclei of stage II decondensation which incorporated lamin LIII from the egg extract. These results show that initiation of DNA replication in chicken erythrocytes requires in addition to ATP-dependent chromatin remodelling (stage I), further changes in chromatin structure that correlates with lamin LIII incorporation, and stage II decondensation.  相似文献   

14.
HeLa cell extracts induced decondensation of lysolecithin permeabilized Xenopus, pig, and human sperm chromatin; decondensation began almost immediately on incubation in the extract and was completed within 10–20 min. The average enlargements of human and pig sperm nuclei were 15-fold and 3-fold, respectively. The structural organization of pig and human sperm chromatin was significantly differnt. Decondensation was differentially inhibited by Mg++ and polyamines; inhibition was least for Xenopus and most for pig sperm nuclei. The nuclear membrane was disintegrated on chromatin dispersion, whereas the nuclei which failed to decondense exhibited distinct nuclear envelopes. The decondensing factors were stable at 65°C for 15 min. The dispersed chromatin was remodelled to somatic nucleosomal structures within 60 min. The remodelled chromatin could be recondensed to chromosome-like structures, when incubated further in extracts from mitosis arrested HeLa cells. © 1994 Wiley-Liss, Inc.  相似文献   

15.
A great deal of circumstantial evidence has linked DNA damage in human spermatozoa with adverse reproductive outcomes including reduced fertility and high rates of miscarriage. Although oxidative stress is thought to make a significant contribution to DNA damage in the male germ line, the factors responsible for creating this stress have not been elucidated. One group of compounds that are thought to be active in this context are the estrogens, either generated as a result of the endogenous metabolism of androgens within the male reproductive tract or gaining access to the latter as a consequence of environmental exposure. In this study, a wide variety of estrogenic compounds were assessed for their direct effects on human spermatozoa in vitro. DNA integrity was assessed using the Comet and TUNEL assays, lesion frequencies were quantified by QPCR using targets within the mitochondrial and nuclear (β-globin) genomes, DNA adducts were characterized by mass spectrometry and redox activity was monitored using dihydroethidium (DHE) as the probe. Of the estrogenic and estrogen analogue compounds evaluated, catechol estrogens, quercetin, diethylstilbestrol and pyrocatechol stimulated intense redox activity while genistein was only active at the highest doses tested. Other estrogens and estrogen analogues, such as 17β-estradiol, nonylphenol, bisphenol A and 2,3-dihydroxynaphthalene were inactive. Estrogen-induced redox activity was associated with a dramatic loss of motility and, in the case of 2-hydroxyestradiol, the induction of significant DNA fragmentation. Mass spectrometry also indicated that catechol estrogens were capable of forming dimers that can cross-link the densely packed DNA strands in sperm chromatin, impairing nuclear decondensation. These results highlight the potential importance of estrogenic compounds in creating oxidative stress and DNA damage in the male germ line and suggest that further exploration of these compounds in the aetiology of male infertility is warranted.  相似文献   

16.
17.
The process of human male pronuclear formation was studied using an experimental model based on in vitro inseminated human zona-free eggs prepared from oocytes that failed to fertilize in a clinical in vitro fertilization program. The main ultrastructural changes in penetrated sperm nuclei transforming into pronuclei were used to define four stages of pronuclear development. The first two stages, representing partial (Stage 1) and total (Stage 2) sperm chromatin decondensation, appeared as early as 1 hr after mixing of gametes. This rapid initial phase was followed by a more lengthy array of events leading to transformation of decondensed sperm nuclei into fully developed male pronuclei (Stages 3 and 4). Stage 3 was characterized by reformation of the nuclear envelope, reorganization of chromatin, and the assembly of nuclcolar precursors. It was not completed until 12 hr after in vitro insemination when fully developed male pronuclei (Stage 4) were first observed. In some eggs pronuclei did not reach Stage 4 at all. The results of this study provide a morphological background for further research into molecular aspects of human male pronuclear development and its regulation.  相似文献   

18.
Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin   总被引:25,自引:0,他引:25  
A Philpott  G H Leno  R A Laskey 《Cell》1991,65(4):569-578
At fertilization, sperm chromatin decondenses in two stages, which can be mimicked in extracts of Xenopus eggs. Rapid, limited decondensation is followed by slower, membrane-dependent decondensation and swelling. Nucleoplasmin, an acidic nuclear protein, occurs at high concentration in Xenopus eggs and has a histone-binding role in nucleosome assembly. Immunodepleting nucleoplasmin from egg extracts inhibits the initial rapid stage of sperm decondensation, and also the decondensation of myeloma nuclei, relative to controls of mock depletion and TFIIIA depletion. Readdition of purified nucleoplasmin recues depleted extracts. A physiological concentration of purified nucleoplasmin alone decondenses both sperm and myeloma nuclei. We conclude that nucleoplasmin is both necessary and sufficient for the first stage of sperm decondensation in Xenopus eggs.  相似文献   

19.
These studies were designed to test the hypothesis that sperm nuclear decondensation and male pronuclear formation during hamster fertilization depend upon the ability of the fertilized oocyte to reduce sperm nuclear disulfide bonds. In a first series of experiments, treatment of mature oocytes with the sulfhydryl blocking agent iodoacetamide or the glutathione oxidant diamide caused a dose-dependent inhibition of decondensation in microinjected sperm nuclei. Inhibition of decondensation was not observed, however, when sperm nuclei were treated in vitro with dithiothreitol (DTT) to reduce disulfide bonds prior to their microinjection. In a second series of experiments, germinal vesicle (GV)-intact oocytes and pronuclear eggs, in which mature, disulfide-rich sperm nuclei do not decondense, were found to support the decondensation of disulfide-poor DTT-treated sperm nuclei or testicular spermatid nuclei. The decondensed sperm nuclei were not, however, transformed into male pronuclei. The results of these studies suggest: (1) that sperm nuclear decondensation in the hamster requires disulfide bond reduction, (2) that GV-intact oocytes and pronuclear eggs lack sufficient reducing power to effect sperm nuclear decondensation, and (3) that disulfide bond reduction is required but not sufficient for pronuclear formation.  相似文献   

20.
Genome organization within the cell nucleus is a result of chromatin condensation achieved by histone tail-tail interactions and other nuclear proteins that counter the outward entropic pressure of the polymeric DNA. We probed the entropic swelling of chromatin driven by enzymatic disruption of these interactions in isolated mammalian cell nuclei. The large-scale decondensation of chromatin and the eventual rupture of the nuclear membrane and lamin network due to this entropic pressure were observed by fluorescence imaging. This swelling was accompanied by nuclear softening, an effect that we quantified by measuring the fluctuations of an optically trapped bead adhered onto the nucleus. We also measured the pressure at which the nuclear scaffold ruptured using an atomic force microscope cantilever. A simple theory based on a balance of forces in a swelling porous gel quantitatively explains the diffusive dynamics of swelling. Our experiments on decondensation of chromatin in nuclei suggest that its compaction is a critical parameter in controlling nuclear stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号