共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence and expression of the gene for N10-formyltetrahydrofolate synthetase from Clostridium cylindrosporum. 总被引:2,自引:0,他引:2
下载免费PDF全文

C. A. Rankin G. C. Haslam R. H. Himes 《Protein science : a publication of the Protein Society》1993,2(2):197-205
Sau3 A and Hind III restriction fragments of Clostridium cylindrosporum genomic DNA were used to isolate clones containing 80% of the N10-H4folate synthetase gene in a 5' fragment and the remaining 20% of the gene in the 3' fragment. These fragments were joined at a common SnaB I restriction site and expressed in Escherichia coli at a level equivalent to what is normally found in C. cylindrosporum. Sequence comparisons show a large degree of homology with genes from two other clostridial species, including a thermophile. Certain conserved sequences found in the three clostridial proteins and in the N10-H4folate synthetase portion of eukaryotic C1-H4folate synthases may represent consensus sequences for nucleotide and H4folate binding. 相似文献
2.
We hypothesized that the unanticipated bioactivity of orally administered unnatural carbon-6 isomers, (6R)-5-formyltetrahydrofolate (5-HCO-THF) and (6S)-5,10-methenyltetrahydrofolate (5,10-CH-THF), in humans [Baggott, J. E., and Tamura, T. (1999) Biochim. Biophys. Acta 1472, 323-32] is explained by the rapid oxidation of (6S)-10-formyltetrahydrofolate (10-HCO-THF), which is produced by in vivo chemical processes from the above folates. An oxidation of 10-HCO-THF produces 10-formyldihydrofolate (10-HCO-DHF), which no longer has the asymmetric center at carbon-6 and is metabolized by aminoimidazole carboxamide ribotide (AICAR) transformylase forming bioactive dihydrofolate. Since cytochrome c (Fe(3+)) rapidly oxidizes both (6R)- and (6S)-10-HCO-THF [Baggott et al. (2001) Biochem. J. 354, 115-22], we investigated the metabolism of 10-HCO-THF by isolated rat liver mitochondria. We found that 10-HCO-THF supported the respiration of mitochondria without uncoupling ATP synthesis. The site of electron donation was identified as complex IV, which contains cytochrome c; the folate product was 10-HCO-DHF, and the reaction was saturable with respect to 10-HCO-THF. Both (6S)- (unnatural) and (6R)-10-HCO-THF supported the respiration of mitochondria, whereas (6S)-5-formyltetrahydrofolate (5-HCO-THF) was inactive. To our knowledge, this cytochrome c oxidation of 10-HCO-THF to 10-HCO-DHF in the mitochondrial intermembrane space represents a possible folate metabolic pathway previously unidentified and would explain the bioactivity of unnatural carbon-6 isomers, (6R)-5-HCO-THF and (6S)-5,10-CH-THF, in humans. 相似文献
3.
Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidiurici ("Clostridium acidi-urici") 总被引:3,自引:3,他引:3
下载免费PDF全文

The gene for 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) from the purinolytic anaerobic bacterium Clostridium acidiurici ("Clostridium acidi-urici") was cloned into Escherichia coli JM83 with plasmid pUC8. A C. acidiurici genomic library was prepared in E. coli from a partial Sau3A digest and screened with antibody against the synthetase. Of 10 antibody-positive clones, 1 expressed a high level of synthetase activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis demonstrated that the protein synthesized in E. coli had the same subunit molecular weight as the C. acidiurici enzyme. The gene was located on an 8.3-kilobase genomic insert and appeared to be transcribed from its own promoter. Analysis of genomic digests with a fragment of the synthetase gene indicated that one copy of the gene was present in the C. acidiurici chromosome. 相似文献
4.
Radfar R Shin R Sheldrick GM Minor W Lovell CR Odom JD Dunlap RB Lebioda L 《Biochemistry》2000,39(14):3920-3926
The structure was solved at 2.5 A resolution using multiwavelength anomalous dispersion (MAD) scattering by Se-Met residues. The subunit of N(10)-formyltetrahydrofolate synthetase is composed of three domains organized around three mixed beta-sheets. There are two cavities between adjacent domains. One of them was identified as the nucleotide binding site by homology modeling. The large domain contains a seven-stranded beta-sheet surrounded by helices on both sides. The second domain contains a five-stranded beta-sheet with two alpha-helices packed on one side while the other two are a wall of the active site cavity. The third domain contains a four-stranded beta-sheet forming a half-barrel. The concave side is covered by two helices while the convex side is another wall of the large cavity. Arg 97 is likely involved in formyl phosphate binding. The tetrameric molecule is relatively flat with the shape of the letter X, and the active sites are located at the end of the subunits far from the subunit interface. 相似文献
5.
The one-carbon metabolism enzymes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) can be found on a single trifunctional protein in the eukaryotes examined. The one exception is in spinach leaves where 10-formyltetrahydrofolate synthetase is monofunctional (Nour, J. M., and Rabinowitz, J. C. (1991) J. Biol. Chem. 266, 18363-18369). In the prokaryotes examined, 10-formyltetrahydrofolate synthetase is either absent or is monofunctional. A cDNA clone encoding spinach leaf 10-formyltetrahydrofolate synthetase was isolated through the use of antibodies to the purified enzyme. This clone had an open reading frame of 1914 base pairs and encoded for a protein containing 636 amino acids with a calculated M(r) of 67,727. The percentage identity between spinach 10-formyltetrahydrofolate synthetase and the synthetase domains in the four trifunctional eukaryotic enzymes and the two monofunctional prokaryotic enzymes that have been cloned and sequenced was: 64.9% human, 63.8% rat, 55.6% yeast cytoplasm, 53.8% yeast mitochondria, 47.8% Clostridium acidi-urici, and 47.9% Clostridium thermoaceticum. Clearly the spinach monofunctional protein had greatest homology with the mammalian proteins. The spinach protein is longer than the two other monofunctional prokaryotic proteins. Possible reasons for this are presented. The codon usage and the putative translation initiation sites are examined and compared with other spinach proteins. 相似文献
6.
Isolation, characterization, and structural organization of 10-formyltetrahydrofolate synthetase from spinach leaves 总被引:4,自引:0,他引:4
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases. 相似文献
7.
8.
10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate dehydrogenase activity. The intermediate linker (residues 311-419) connecting the two catalytic domains does not contribute directly to the enzyme catalytic centers but is crucial for 10-formyltetrahydrofolate dehydrogenase activity. We have identified a region within the intermediate domain (residues 384-405) that shows sequence similarity to the central helix of calmodulin. Deletion of either the entire putative helix or the central part of the helix or replacement of the six residues within the central part with alanines resulted in total loss of the 10-formyltetrahydrofolate dehydrogenase activity, whereas the full hydrolase and aldehyde dehydrogenase activities were retained. Alanine-scanning mutagenesis revealed that neither of the six residues alone is required for FDH activity. Analysis of the predicted secondary structures and circular dichroic and fluorescence spectroscopy studies of the intermediate domain expressed as a separate protein showed that this region is likely to consist of two alpha-helices connected by a flexible loop. Our results suggest that flexibility within the putative helix is important for FDH function and could be a point for regulation of the enzyme. 相似文献
9.
Purification and properties of phosphatidylglycerophosphate synthetase from mammalian liver mitochondria 总被引:1,自引:0,他引:1
The enzyme which catalyzes the synthesis of phosphatidylgly cerophosphate from an-glycerol-3-phosphated and cytidine diphosphate diacylglycerol was released from rat or pig liver mitochondrial membranes by extraction with Triton X-100 or Nonidet P-40. The detergent-extracted enzyme, like the activity of intact mitochondria, did not require added cations or lipids. The Triton extracts were fractionated by column chromatography on Bio-Gel A-1.5. The fractions obtained from the columns exhibited little activity in the standard assay system unless divalent cations were included. Additional stimulation (about twofold) was observed in the presence of added phospholipids. The cation requirement of the purified enzyme was relatively nonspecific with Mg2+, Ba2+, or Ca2+ providing maximal activity in the 10mM range. Either Mn2+ or Co2+ were stimulatory at somewhat lower concentrations but higher concentrations were inhibitory. Other cations such as Cd2+, Zn2+,Hg2+, or Cu2+ were ineffective as cofactors, and in the presence of Mg2+ inhibited the reaction at concentrations greater than 0.5 mM. The phospholipik stimulation was obtained specifically with phosphatidylethanolamines from natural or synthetic sources. Other diacylglycerophosphatides or lysophosphatides including lysophosphatidylethanolamine were ineffective. 相似文献
10.
Strickland KC Krupenko NI Dubard ME Hu CJ Tsybovsky Y Krupenko SA 《Chemico-biological interactions》2011,191(1-3):129-136
10-Formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1), an abundant cytosolic enzyme of folate metabolism, shares significant sequence similarity with enzymes of the aldehyde dehydrogenase (ALDH) family. The enzyme converts 10-formyltetrahydrofolate (10-fTHF) to tetrahydrofolate and CO(2) in an NADP(+)-dependent manner. The mechanism of this reaction includes three consecutive steps with the final occurring in an ALDH-homologous domain. We have recently identified a mitochondrial isoform of FDH (mtFDH), which is the product of a separate gene, ALDH1L2. Its overall identity to cytosolic FDH is about 74%, and the identity between the ALDH domains rises up to 79%. In the present study, human mtFDH was expressed in Escherichia coli, purified to homogeneity, and characterized. While the recombinant enzyme was capable of catalyzing the 10-fTHF hydrolase reaction, it did not produce detectable levels of ALDH activity. Despite the lack of typical ALDH catalysis, mtFDH was able to perform the characteristic 10-fTHF dehydrogenase reaction after reactivation by recombinant 4'-phosphopantetheinyl transferase (PPT) in the presence of coenzyme A. Using site-directed mutagenesis, it was determined that PPT modifies mtFDH specifically at Ser375. The C-terminal domain of mtFDH (residues 413-923) was also expressed in E. coli and characterized. This domain was found to exist as a tetramer and to catalyze an esterase reaction that is typical of other ALDH enzymes. Taken together, our studies suggest that ALDH1L2 has enzymatic properties similar to its cytosolic counterpart, although the inability to catalyze the ALDH reaction with short-chain aldehyde substrates remains an unresolved issue at present. 相似文献
11.
P Nagley 《Trends in genetics : TIG》1991,7(1):1-4
12.
Paul A. Watkins Jyh-Feng Lu Lelita T. Braiterman Steven J. Steinberg Kirby D. Smith 《Cell biochemistry and biophysics》2000,32(1-3):333-337
X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by elevated levels of saturated very long-chain fatty acids (VLCFAs) in plasma and tissues. In X-ALD, peroxisomal very-long-chain acyl-CoA synthetase (VLCS) fails to activate VLCFAs, preventing their degradation via β-oxidation. However, the product of the defective XALD gene (ALDP) is not a VLCS, but rather a peroxisomal membrane protein (PMP). Disruption of either or both of two yeast PMP genes related to the XALD gene did not produce a biochemical phenotype resembling that found in X-ALD fibroblasts. The authors identified a candidate yeast VLCS gene (the FAT1 locus) by its homology to rat liver VLCS. Disruption of this gene decreased VLCS activity, but had no effect on long-chain acyl-CoA synthetase activity. In FAT1-disruption strains, VLCS activity was reduced to 30–40% of wild-type in both a microsome-rich 27,000g supernatant fraction and a peroxisome- and mitochondria-rich pellet fraction of yeast spheroplast homogenates. Separation of the latter organelles by density gradient centrifugation revealed that VLCS activity was peroxisomal and not mitochondrial. VLCS gene-disruption strains had increased cellular VLCFA levels, compared to wild-type yeast. The extent of both the decrease in peroxisomal VLCS activity and the VLCFA accumulation in this yeast model resembles that observed in cells from X-ALD patients. Characterization of the gene(s) responsible for the residual peroxisomal VLCS activity may suggest new therapeutic approaches in X-ALD. 相似文献
13.
Disruption of the mouse mu-calpain gene reveals an essential role in platelet function 总被引:1,自引:0,他引:1
下载免费PDF全文

Azam M Andrabi SS Sahr KE Kamath L Kuliopulos A Chishti AH 《Molecular and cellular biology》2001,21(6):2213-2220
Conventional calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. There are two forms of conventional calpains: the mu-calpain, or calpain I, which requires micromolar calcium for half-maximal activation, and the m-calpain, or calpain II, which functions at millimolar calcium concentrations. We evaluated the functional role of the 80-kDa catalytic subunit of mu-calpain by genetic inactivation using homologous recombination in embryonic stem cells. The mu-calpain-deficient mice are viable and fertile. The complete deficiency of mu-calpain causes significant reduction in platelet aggregation and clot retraction but surprisingly the mutant mice display normal bleeding times. No detectable differences were observed in the cleavage pattern and kinetics of calpain substrates such as the beta3 subunit of alphaIIbbeta3 integrin, talin, and ABP-280 (filamin). However, mu-calpain null platelets exhibit impaired tyrosine phosphorylation of several proteins including the beta3 subunit of alphaIIbbeta3 integrin, correlating with the agonist-induced reduction in platelet aggregation. These results provide the first direct evidence that mu-calpain is essential for normal platelet function, not by affecting the cleavage of cytoskeletal proteins but by potentially regulating the state of tyrosine phosphorylation of the platelet proteins. 相似文献
14.
Nucleotide sequence of the Clostridium acidiurici ("Clostridium acidi-urici") gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae 总被引:5,自引:2,他引:5
下载免费PDF全文

The nucleotide sequence of the gene for 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) from Clostridium acidiurici ("Clostridium acidi-urici") was determined. The synthetase mRNA initiation and termination regions were determined by primer extension and S1 nuclease mapping. Two potential -10 and -35 promoter regions were identified upstream of mRNA initiation. The terminator region was found to be in a large region of dyad symmetry. A comparison of the amino acid sequences of the monofunctional synthetase and the eucaryotic trifunctional enzyme, C1-tetrahydrofolate synthase, from Saccharomyces cerevisiae demonstrated a region of strong homology. 相似文献
15.
L Schirch 《Archives of biochemistry and biophysics》1978,189(2):283-290
The rabbit liver enzymes 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, and 10-formyltetrahydrofolate synthetase have been purified to apparent homogeneity. Polyacrylamide gel electrophoresis patterns suggest a single protein is responsible for all three catalytic activities. The properties of the dehydrogenase and cyclohydrolase activities suggest that a single active site may catalyze these two reactions. This conclusion is based on spectral changes observed in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate, the similarity of dissociation constants determined from initial velocity studies for the two reactions, and the similarity of the pH-activity curves for the two reactions. NADP+ and NADPH lower the Km for 5,10-methenyltetrahydrofolate 2- to 3-fold above pH 7 in the cyclohydrolase reaction but below pH 7 they act as partial inhibitors. 相似文献
16.
The stable HepG2 transfectants anti-sensing expression of the glutathione synthetase (GS) gene exhibited delayed cell growth and increased reactive oxygen species (ROS) level. After the treatment with hydrogen peroxide, the intracellular ROS level was much higher in the stable transfectants than in the vector control cells. However, the GSH levels decreased more significantly in the stable transfectants than in the vector control cells, in the presence of hydrogen peroxide. Hydrogen peroxide-induced apoptosis of the stable transfectants was notably higher than that of the vector control cells. The GS anti-sense RNAs rendered the HepG2 cells more sensitive to growth arrest caused by glucose deprivation. They also sensitized the HepG2 cells to cadmium chloride (Cd) and nitric oxide (NO)-generating sodium nitroprusside (SNP). In brief, the results confirm that GS plays an important role in the defense of the human hepatoma cells against oxidative stress by reducing apoptosis and maintaining redox homeostasis. 相似文献
17.
Kawamata H Magrané J Kunst C King MP Manfredi G 《The Journal of biological chemistry》2008,283(42):28321-28328
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS. 相似文献
18.
Chimnaronk S Gravers Jeppesen M Suzuki T Nyborg J Watanabe K 《The EMBO journal》2005,24(19):3369-3379
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites. 相似文献
19.
Mamoun CB Beckerich JM Gaillardin C Kepes F 《The Journal of biological chemistry》1999,274(16):11296-11302
Genetic studies of Saccharomyces cerevisiae have identified many components acting to deliver specific proteins to their cellular locations. Genome analysis, however, has indicated that additional genes may also participate in such protein trafficking. The product of the yeast Yarrowia lipolytica TSR1 gene promotes the signal recognition particle-dependent translocation of secretory proteins through the endoplasmic reticulum. Here we describe the identification of a new gene family of proteins that is well conserved among different yeast species. The TSR1 genes encode polypeptides that share the same protein domain distribution and, like Tsr1p, may play an important role in the early steps of the signal recognition particle-dependent translocation pathway. We have identified five homologues of the TSR1 gene, four of them from the yeast Saccharomyces cerevisiae and the other from Hansenula polymorpha. We generated a null mutation in the S. cerevisiae YHC8 gene, the closest homologue to Y. lipolytica TSR1, and used different soluble (carboxypeptidase Y, alpha-factor, invertase) and membrane (dipeptidyl-aminopeptidase) secretory proteins to study its phenotype. A large accumulation of soluble protein precursors was detected in the mutant strain. Immunofluorescence experiments show that Yhc8p is localized in the endoplasmic reticulum. We propose that the YHC8 gene is a new and important component of the S. cerevisiae endoplasmic reticulum membrane and that it functions in protein translocation/insertion of secretory proteins through or into this compartment. 相似文献
20.
Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42 总被引:12,自引:0,他引:12
BACKGROUND: Mammalian Diaphanous-related formins (Drfs) act as Rho small GTPase effectors during growth factor-induced cytoskeletal remodeling and cell division. While both p140 mDia1 (herein called Drf1) and p134 mDia2 (Drf3) have been shown to bind in vitro to activated RhoA-C, and Drf3 has also been shown to bind to Cdc42, little is known about the cellular function of these GTPase effector pairs. Thus, we have begun targeting the murine Drf genes to address their various contributions to small GTPase signaling in cytoskeletal remodeling and development. RESULTS: Drf1 +/+, +/-, and -/- cell lines were derived from embryonic stem cells. While some Drf1 +/- lines had fewer actin stress fibers, several Drf1 +/- and -/- cells were more motile and had more abundant lamella and filopodia. Because the apparent "gain-of-function" corresponded with elevated levels of Drf3 protein expression, we hypothesized that the effects on the actin cytoskeleton were due to Cdc42 utilization of Drf3 as an effector. In this study, we found that inactive Drf3 variants and microinjected Drf3 antibodies interfered with Cdc42-induced filopodia. In addition, we observed that Drf3 contains a previously unidentified CRIB-like motif within its GTPase binding domain (GBD). By fluorescent resonance energy transfer (FRET) analysis, we demonstrate that this motif is required for Cdc42 binding and Drf3 recruitment to the leading edge and, surprisingly, to the microtubule organizing center (MTOC) of migrating fibroblasts. CONCLUSIONS: Our observations extend the role of the mammalian Drfs in cell signaling and demonstrate that Cdc42 not only activates Drf3, but guides the effector to sites at the cell cortex where it remodels the actin cytoskeleton. 相似文献