首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linolenic acid (C18:3) is the main endogenous unsaturated fatty acid of thylakoid membrane lipids, and seems in its free form to exert significant effects on the structure and function of photosynthetic membranes. In this investigation the effect of linolenic acid was studied at various pH values on the electron flow rate in isolated spinach chloroplasts and related to deltapH, the proton pump and the pH of the inner thylakoid space (pHi). The deltapH and pHi were estimated from the extent of the fluorescence quenching of 9-aminoacridine. Linolenic acid caused a shift (approximately one unit) of the pH optimum for electron flow toward acidity in the following systems: (a) photosystems II + I (from H2O to NADP+ or to 2,6-dichlorophenolindophenol) coupled or non-coupled; (b) photosystem II (from H2O to 2,6-dichlorophenolindophenol in the presence of dibromothymoquinone). In photosystem I conditions (phenazine methosulphate), the deltapH of the control increased as a function of external pHo with a maximum around pH 8.8. When linolenic acid was added, the deltapH dropped, but its optimum was shifted toward more acidic pHo. The same phenomena were also observed in photosytems II + I (from H2O to ferricyanide) and in photosystem II conditions (from H2O to ferricyanide in the presence of dibromothymoquinone). However, the deltapH was smaller and the sensitivity of the proton gradient toward linolenic acid was eventually higher than for photosystem I electron flow activity. The proton pump which might be considered as a measure of the internal buffering capacity of thylakoids was optimum at pHo, 6.7 in the controls. An addition of linolenic acid diminished the proton pump and shifted its optimum toward higher pHo. As a consequence, pHi increased when pHo was raised. At the optimal pHo 8.6 to 9, pHi were 5 to 5.5. Additions of increasing concentrations of linolenic acid displaced the curves toward higher pHi. A decrease of pHo was therefore required to maintain the pHi in the range of 5-5.5 for maximum electron flow. In conclusion, the electron flow activity seems to be delicately controlled by the proton pump (buffer capacity), deltapH, pHi and pHo. Fatty acids damage the membrane integrity in such a way that the subtile equilibrium between the factors is disturbed.  相似文献   

2.
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.  相似文献   

3.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

4.
Escherichia coli K12 becomes resistant to killing by acid (habituates to acid) in a few minutes at pH 5.0. Habituation involves protein synthesis-dependent and -independent stages; both must occur at an habituating pH. The habituation sensor does not detect increased delta pH (or decreased delta psi) nor an increased difference between pHo and periplasmic pH but probably detects a fall in either external or periplasmic pH. Phosphate ions inhibit habituation, at any stage, probably by interfering with outer membrane passage of hydrogen ions. Most outer membrane components tested are not required for habituation but phoE deletion mutants habituated poorly and are acid-resistant. Strains derepressed for phoE, in contrast, showed increased acid sensitivity. These and other results suggest that habituation involves hydrogen ions or protonated carriers crossing the outer membrane preferentially via the PhoE pore, a process inhibited by phosphate and other anions. Stimulation by phosphate of the poor growth of E. coli at pH 5.0 is in accord with the above. Acetate did not enhance acid killing of pH 5.0 cells, suggesting that their resistance does not depend on maintaining pHi near to neutrality at an acidic pHo level.  相似文献   

5.
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5-(N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity.  相似文献   

6.
The pH difference generated across the chloroplast membraneupon illumination (pH) and the internal pH (pHi) were analyzedin aged spinach chloroplasts and in fresh chloroplasts supplementedwith linolenate. In electron-flow conditions where both photosystemsor either photosystem alone were functional, the pH droppedand their optima shifted toward more acidic external pH (pHo)with a simultaneous increase in pHi. Upon aging or additionof linolenate, a decrease of pHo was therefore required to maintainthe pHi in the range of 5–5.5 for maximum electron-flowactivity. Moreover, aging like linolenate, diminished the protonpump activity and shifted its optimum (pH 6.7 in the controls)toward higher pHo. Although pH and pHi changes were similarin all electron-flow conditions, the sensitivity of pH towardaging and linolenate was eventually higher under photosystemII than photosystem I conditions. In conclusion, the electron-flow activity seems to be delicatelycontrolled by the proton pump, pH, pHi and pHo. Unsaturatedfatty acids which are released during chloroplast aging damagethe membrane integrity in such a way that the subtle equilibriumbetween these factors is disturbed. (Received April 19, 1977; )  相似文献   

7.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

8.
Conditions for the use of both [14C]methylamine and 5, 5-dimethyl[14C]oxa-azolidine-2,4-dione (DMO) to measure the H+ concentration of intracellular compartments of monomorphic long thin bloodstream forms of Trypanosoma brucei were established. Neither probe was actively transported or bound to internal components of the cell and both probes equilibrated passively with a t1/2 close to 8 min. DMO was excluded from cells, while methylamine was accumulated but not metabolized. Solution of the three-compartment problem revealed that, when cells were respiring aerobically on glucose at an external pH of 7.5, the cytoplasmic pH was in the range 6.99-7.03, the pH of the mitochondrial matrix was 7.71-7.73, and the algebraic average pH of the various endosomal compartments was 5.19-5.50. Similar values were found when cells were respiring aerobically on glycerol. However, bloodstream forms of T. brucei could not maintain a constant internal H+ concentration outside the external pH range 7.0-7.5, and no evidence for the presence of an H+/Na+ exchanger was found. Full motility and levels of pyruvate production were maintained as the external pH was raised as high as 9.5, suggesting that these cells tolerate significant internal alkalinisation. However, both motility and pyruvate production were severely inhibited under acidic conditions, and the cells deteriorated rapidly below an external pH of 6.5. Physiologically, the plasma membrane of T. brucei had low permeability to H+ and the internal pH was unaffected by changes in Deltapsip, which is dominated by the potassium diffusion potential. However, in the presence of FCCP, the internal pH fell rapidly about 0.5 pH unit and came into equilibrium with Deltapsip. Oligomycin abolished the mitochondrial pH gradient (DeltapHm) selectively, whereas chloroquine abolished only the endosomal pH gradient (DeltapHe). The pH gradient across the plasma membrane (DeltapHp) alone could be abolished by careful osmotic swelling of cells. The plasma membrane had an inwardly directed proton-motive force (DeltaPp) of -52 mV and an inwardly directed sodium-motive force (DeltaNp) of -149 mV, whereas the mitochondrial inner membrane had only an inwardly directed DeltaPm of -195 mV. The pH gradient across the endosomal membranes was not accompanied by an electrical gradient. Consequently, endosomal membranes had an algebraically average outwardly directed DeltaPl within the range + 89 to +110 mV, depending on the measurement method.  相似文献   

9.
p-Aminohippuric acid (PAH) uptake was studied in basal-lateral membrane vesicles prepared from rabbit renal cortex. An outwardly directed hydroxyl gradient (pHo = 6.0, pHi = 7.6) stimulated PAH uptake slightly over that when the internal and external pH values were equal at 7.6. A 100 mM sodium gluconate gradient directed into the basal-lateral membrane vesicles increased PAH uptake about 2-fold over that when N-methyl-D-glucamine or potassium gluconate gradients were present. When hydroxyl and sodium gradients were simultaneously imposed (pHo = 6.0, pHi = 7.6 and 100 mM sodium gluconate extravesicularly) PAH uptake was stimulated greater than with the pH or Na+ gradient alone. In fact, an 'overshoot' was observed. Countertransport experiments showed that either intravesicular PAH or intravesicular PAH and Na+ could stimulate 3H-PAH uptake. Probenecid, an inhibitor of organic anion transport, inhibited both the hydroxyl-stimulated and Na+ gradient-stimulated PAH uptake but the greatest inhibition by probenecid was seen when the hydroxyl and sodium gradients were both present. Thus, it is proposed that the driving force for PAH accumulation across the basal-lateral membrane of the proximal tubule is a transport system which moves Na+ and PAH into the cell for an hydroxyl ion leaving the cell, i.e. a sodium-dependent anion-anion exchange system.  相似文献   

10.
Recessed-tip microelectrodes were used to measure internal pH (pHi) in the fungus Neurospora, and to examine the response of pHi to several kinds of stress: changes of extracellular pH (pHo), inhibition of the principal proton pump in the plasma membrane, and inhibition of respiration. Under control conditions, at pHo = 5.8, pHi in Neurospora is 7.19 +/- 0.04. Changes of pHo between 3.9 and 9.3 affect pHi linearly but with a slope of only approximately 0.1 unit pHi per unit pHo, stable pHi being reached within 3 min of changed pHo. Despite a postulated high passive permeability of the Neurospora membrane to protons (Slayman, 1970), neither active nor passive H+ transport appears critical to pHi because (alpha) specific inhibition of the proton pump by orthovanadate has little effect on pHi, and (b) cytoplasmic acidification produced by respiratory blockade is unaffected by the size or direction of proton gradient. To convert measured changes in pHi into net proton fluxes, intracellular buffering capacity (beta i) was measured by the weak acid/weak base technique. At pHi = 7.2, beta i was (-) 35 mmol H+ (liter cell water)-1 (pH unit)-1, but beta i increased substantially in both the acid and alkaline directions, which suggests that amino acid side chains are the principal source of buffer.  相似文献   

11.
The internal pH (pHi) of Toxoplasma gondii was estimated by measuring the accumulation of the weak base 9-aminoacridine in buffers with various ionic compositions. The pHi of the metabolizing parasite increased when the extracellular K+ was elevated in alkaline medium or when the external pH (pHe) was substantially increased in medium employing high external K+ (90 mM). The parasite in mouse peritoneal fluid, or in potassium sulfate buffer (pH 8.2), where the pHi was demonstrated to be increased to 7.9, became motile when acidic buffer was substituted for the original suspension medium. This acid-induced independent movement subsided within 5 min but was repeatedly induced if the pHe was serially lowered to 6.0. Basic buffers, on the other hand, abolished motility when applied to the moving parasites. Nigericin, which is known to collapse pH gradients across the membrane, also abolished motility.  相似文献   

12.
A Dascalu  Z Nevo  R Korenstein 《FEBS letters》1991,282(2):305-309
Activation of the Na+/H+ exchanger following isosmotic and hyperosmotic stimuli was investigated in an osteoblast cell line (RCJ 1.20). The pH dependence of the transporter activity was studied under conditions of abolished proton gradient (pHi = pHo) across the membrane. The isotonic response is Na+o dependent, increases towards higher pH-values, displaying a sigmoidal dependence on pHi = o (Hill coefficient approximately 1.8) and is controlled by pHo. The greater than first order dependence on pH suggests that H+o inhibits the exchange beyond the rate expected from competition with the Na+o alone. This may be due to the existence of an external H+ regulatory site with a negative cooperative effect on the intra- or extracellular transport site. The hyperosmotic activation is Na+o independent, parallels the sigmoidal pH dependence of the isosmotic stimulus (Hill coefficient approximately 2.0) and is mediated through an increase of the Vmax without a change in the intracellular proton sensitivity.  相似文献   

13.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

14.
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.  相似文献   

15.
The acid tolerance response (ATR) is an adaptive system triggered at external pH (pHo) values of 5.5 to 6.0 that will protect cells from more severe acid stress (J. Foster and H. Hall, J. Bacteriol. 172:771-778, 1990). Correlations between the internal pH (pHi) of adapted versus unadapted cells at pHo of 3.3 indicate that the ATR system produces an inducible pH-homeostatic function. This function serves to maintain the pHi above 5 to 5.5. Below this range, cells rapidly lose viability. Development of this pH homeostasis mechanism was sensitive to protein synthesis inhibitors and operated only to augment the pHi at pHo values below 4. In contrast, classical constitutive pH homeostasis was insensitive to protein synthesis inhibitors and was efficient only at pHo values above 4. Physiological studies indicated an important role for the Mg(2+)-dependent proton-translocating ATPase in affording ATR-associated survival during exposure to severe acid challenges. Along with being acid intolerant, cells deficient in this ATPase did not exhibit inducible pH homeostasis. We speculate that adaptive acid tolerance is important to Salmonella species in surviving acid encounters in both the environment and the infected host.  相似文献   

16.
Voltage-activated H+ currents were studied in rat alveolar epithelial cells using tight-seal whole-cell voltage clamp recording and highly buffered, EGTA-containing solutions. Under these conditions, the tail current reversal potential, Vrev, was close to the Nernst potential, EH, varying 52 mV/U pH over four delta pH units (delta pH = pHo - pHi). This result indicates that H+ channels are extremely selective, PH/PTMA > 10(7), and that both internal and external pH, pHi, and pHo, were well controlled. The H+ current amplitude was practically constant at any fixed delta pH, in spite of up to 100-fold symmetrical changes in H+ concentration. Thus, the rate-limiting step in H+ permeation is pH independent, must be localized to the channel (entry, permeation, or exit), and is not bulk diffusion limitation. The instantaneous current- voltage relationship exhibited distinct outward rectification at symmetrical pH, suggesting asymmetry in the permeation pathway. Sigmoid activation kinetics and biexponential decay of tail currents near threshold potentials indicate that H+ channels pass through at least two closed states before opening. The steady state H+ conductance, gH, as well as activation and deactivation kinetic parameters were all shifted along the voltage axis by approximately 40 mV/U pH by changes in pHi or pHo, with the exception of the fast component of tail currents which was shifted less if at all. The threshold potential at which H+ currents were detectably activated can be described empirically as approximately 20-40(pHo-pHi) mV. If internal and external protons regulate the voltage dependence of gH gating at separate sites, then they must be equally effective. A simpler interpretation is that gating is controlled by the pH gradient, delta pH. We propose a simple general model to account for the observed delta pH dependence. Protonation at an externally accessible site stabilizes the closed channel conformation. Deprotonation of this site permits a conformational change resulting in the appearance of a protonation site, possibly the same one, which is accessible via the internal solution. Protonation of the internal site stabilizes the open conformation of the channel. In summary, within the physiological range of pH, the voltage dependence of H+ channel gating depends on delta pH and not on the absolute pH.  相似文献   

17.
The distribution of 86Rb+ and the radiolabelled lipophilic cation [3H]methyltriphenylphosphonium (MePh3P+) was used to investigate the membrane potentials that exist in bloodstream forms of Trypanosoma brucei. Even after correction for binding to cellular constituents, the accumulation of MePh3P+ was approximately tenfold greater than the accumulation of Rb+ under resting conditions. The addition of low concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin reduced the accumulation of MePh3P+ tenfold without perturbing the accumulation of Rb+. Although selective permeabilization of the plasma membrane abolished the accumulation of Rb+ and caused a substantial decrease in the accumulation of MePh3P+, a significant carbonylcyanide-p-trifluoromethoxyphenylhydrazone-sensitive accumulation of MePh3P+ persisted under these conditions. These data were consistent with the presence of at least two distinct membrane potentials (delta psi) in bloodstream forms of T. brucei; a potential across the plasma membrane (delta psi p) and an additional delta psi, generated by the electrogenic movement of H+, across the membrane of an intracellular organelle that possesses no electrical permeability to Rb+ or K+.  相似文献   

18.
The properties of the Na+/H+ exchange system in the glial cell lines C6 and NN were studied from 22Na+ uptake experiments and measurements of the internal pH (pHi) using intracellularly trapped biscarboxyethyl-carboxyfluorescein. In both cell types, the Na+/H+ exchanger is the major mechanism by which cells recover their pHi after an intracellular acidification. The exchanger is inhibited by amiloride and its derivatives. The pharmacological profile (ethylisopropylamiloride greater than amiloride greater than benzamil) is identical for the two cell lines. Both Na+ and Li+ can be exchanged for H+. Increasing the external pH increases the activity of the exchanger in the two cell lines. In NN cells the external pH dependence of the exchanger is independent of the pHi. In contrast, in C6 cells, changing the pHi value from 7.0 to 6.5 produces a pH shift of 0.6 pH units in the external pH dependence of the exchanger in the acidic range. Decreasing pHi activates the Na+/H+ exchanger in both cell lines. Increasing the osmolarity of the external medium with mannitol produces an activation of the exchanger in C6 cells, which leads to a cell alkalinization. Mannitol action on 22Na+ uptake and the pHi were not observed in the presence of amiloride derivatives. Mannitol produces a modification of the properties of interaction of the antiport with both internal and external H+. It shifts the pHi dependence of the system to the alkaline range and the external pH (pHo) dependence to the acidic range. It also suppresses the interdependence of pHi and pHo controls of the exchanger's activity. NN cells that possess an Na+/H+ exchange system with different properties do not respond to mannitol by an increased activity of the Na+/H+ exchanger. The action of mannitol on C6 cells is unlikely to be mediated by an activation of protein kinase C.  相似文献   

19.
Buckhout TJ 《Plant physiology》1994,106(3):991-998
The kinetics behavior of the H+-sucrose (Suc) symporter was investigated in plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves by analyzing the effect of external and internal pH (pHo and pHi, respectively) on Suc uptake. The apparent Km for Suc uptake increased 18-fold as the pHo increased from 5.5 to 7.5. Over this same pHo range, the apparent Vmax for Suc uptake remained constant. The effects of pHi in the presence or absence of internal Suc were exclusively restricted to changes in Vmax. Thus, proton concentration on the inside of the membrane vesicles ([H+]i) behaved as a noncompetitive inhibitor of Suc uptake. The Km for the proton concentration on the outside of the membrane vesicles was estimated to be pH 6.3, which would indicate that at physiological apoplastic pH Suc transport might be sensitive to changes in pHo. On the other hand, the [H+]i for half-maximal inhibition of Suc uptake was approximately pH 5.4, making regulation of Suc transport through changes in [H+]i unlikely. These results were interpreted in the framework of the kinetics models for co-transport systems developed by D. Sanders, U.-P. Hansen, D. Gradmann, and C. L. Slayman (J Membr Biol [1984] 77: 123-152). Based on their analysis, the behavior of the Suc symporter with respect to the [H+]i is interpreted as an ordered binding mechanism by which the binding of Suc on the apoplastic side of the membrane and its release on the symplastic side precedes that of H+ (i.e. a first-on, first-off model).  相似文献   

20.
L-type Ca2+ channel currents were recorded from myocytes isolated from bovine pial and porcine coronary arteries to study the influence of changes in intracellular pH (pHi). Whole cell ICa fell when pHi was made more acidic by substituting HEPES/NaOH with CO2/bicarbonate buffer (pHo 7.4, 36 degrees C), and increased when pHi was made more alkaline by addition of 20 mM NH4Cl. Peak ICa was less pHi sensitive than late ICa (170 ms after depolarization to 0 mV). pHi-effects on single Ca2+ channel currents were studied with 110 mM BaCl2 as the charge carrier (22 degrees C, pHo 7.4). In cell-attached patches pHi was changed by extracellular NH4Cl or through the opened cell. In inside-out patches pHi was controlled through the bath. Independent of the method used the following results were obtained: (a) Single channel conductance (24 pS) and life time of the open state were not influenced by pHi (between pHi 6 and 8.4). (b) Alkaline pHi increased and acidic pHi reduced the channel availability (frequency of nonblank sweeps). (c) Alkaline pHi increased and acidic pHi reduced the frequency of late channel re- openings. The effects are discussed in terms of a deprotonation (protonation) of cytosolic binding sites that favor (prevent) the shift of the channels from a sleepy to an available state. Changes of bath pHo mimicked the pHi effects within 20 s, suggesting that protons can rapidly permeate through the surface membrane of vascular smooth muscle cells. The role of pHi in Ca2+ homeostases and vasotonus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号