首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structure of the cyclic phosphodiesterase (CPDase) from Arabidopsis thaliana, an enzyme involved in the tRNA splicing pathway, was determined at 2.5 A resolution. CPDase hydrolyzes ADP-ribose 1",2"-cyclic phosphate (Appr>p), a product of the tRNA splicing reaction, to the monoester ADP-ribose 1"-phosphate (Appr-1"p). The 181 amino acid protein shows a novel, bilobal arrangement of two alphabeta modules. Each lobe consists of two alpha-helices on the outer side of the molecule, framing a three- or four-stranded antiparallel beta-sheet in the core of the protein. The active site is formed at the interface of the two beta-sheets in a water-filled cavity involving residues from two H-X-T/S-X motifs. This previously noticed motif participates in coordination of a sulfate ion. A solvent-exposed surface loop (residues 100-115) is very likely to play a flap-like role, opening and closing the active site. Based on the crystal structure and on recent mutagenesis studies of a homologous CPDase from Saccharomyces cerevisiae, we propose an enzymatic mechanism that employs the nucleophilic attack of a water molecule activated by one of the active site histidines.  相似文献   

2.
The crystal structure of the tissue-type transglutaminase from red sea bream liver (fish-derived transglutaminase, FTG) has been determined at 2.5-A resolution using the molecular replacement method, based on the crystal structure of human blood coagulation factor XIII, which is a transglutaminase zymogen. The model contains 666 residues of a total of 695 residues, 382 water molecules, and 1 sulfate ion. FTG consists of four domains, and its overall and active site structures are similar to those of human factor XIII. However, significant structural differences are observed in both the acyl donor and acyl acceptor binding sites, which account for the difference in substrate preferences. The active site of the enzyme is inaccessible to the solvent, because the catalytic Cys-272 hydrogen-bonds to Tyr-515, which is thought to be displaced upon acyl donor binding to FTG. It is postulated that the binding of an inappropriate substrate to FTG would lead to inactivation of the enzyme because of the formation of a new disulfide bridge between Cys-272 and the adjacent Cys-333 immediately after the displacement of Tyr-515. Considering the mutational studies previously reported on the tissue-type transglutaminases, we propose that Cys-333 and Tyr-515 are important in strictly controlling the enzymatic activity of FTG.  相似文献   

3.
Analysis of tomato pectinesterase by carboxymethylation, with and without reduction, shows that the enzyme has two intrachain disulfide bridges. Analysis of fragments obtained from the native enzyme after digestion with pepsin identified bridges connecting Cys-98 with Cys-125, and Cys-166 with Cys-200. The locations of disulfide bridges in tomato pectinesterase are not identical to those in three distantly related pectinesterases (18-33% residue identities) from microorganisms. However, one half-Cys (i.e., Cys-166) position is conserved in all four enzymes. Sequence comparisons of the overall structures suggest a special importance for three short segments of the entire protein. One segment is at the N-terminal part of the tomato pectinesterase, another in the C-terminal portion near the distal end of the second disulfide loop, and the third segment is located in the central part between the two disulfide bridges. The latter segment, encompassing only 40 residues of the entire protein, appears to high-light a functional site in a midchain segment.  相似文献   

4.
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.  相似文献   

5.
Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.  相似文献   

6.
The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.  相似文献   

7.
The crystal structure of the engineered monomeric human Cu,ZnSOD triple mutant F50E/G51E/E133Q (Q133M2SOD) is reported at atomic resolution (1.02 A). This derivative has about 20 % of the wild-type activity. Crystals of Q133M2SOD have been obtained in the presence of CdCl2. The metal binding site is disordered, with both cadmium and copper ions simultaneously binding to the copper site. The cadmium (II) ions occupy about 45 % of the copper sites by binding the four histidine residues which ligate copper in the native enzyme, and two further water molecules to complete octahedral coordination. The copper ion is tri-coordinate, and the fourth histidine (His63) is detached from copper and bridges cadmium and zinc. X-ray absorption spectroscopy performed on the crystals suggests that the copper ion has undergone partial photoreduction upon exposure to the synchrotron light. The structure is also disordered in the disulfide bridge region of loop IV that is located at the subunit/subunit interface in the native SOD dimer. As a consequence, the catalytically relevant Arg143 residue is disordered. The present structure has been compared to other X-ray structures on various isoenzymes and to the solution structure of the same monomeric form. The structural results suggest that the low activity of monomeric SOD is due to the disorder in the conformation of the side-chain of Arg143 as well as of loop IV. It is proposed that the subunit-subunit interactions in the multimeric forms of the enzyme are needed to stabilize the correct geometry of the cavity and the optimal orientation of the charged residues in the active channel. Furthermore, the different coordination of cadmium and copper ions, contemporaneously present in the same site, are taken as models for the oxidized and reduced copper species, respectively. These properties of the structure have allowed us to revisit the enzymatic mechanism.  相似文献   

8.
Although the activation of low-molecular weight protein tyrosine phosphatases by certain purines and purine derivatives was first described three decades ago, the mechanism of this rate enhancement was unknown. As an example, adenine activates the yeast low-molecular weight protein tyrosine phosphatase LTP1 more than 30-fold. To examine the structural and mechanistic basis of this phenomenon, we have determined the crystal structure of yeast LTP1 complexed with adenine. In the crystal structure, an adenine molecule is found bound in the active site cavity, sandwiched between the side chains of two large hydrophobic residues at the active site. Hydrogen bonding to the side chains of other active site residues, as well as some water-mediated hydrogen bonds, also helps to fix the position of the bound adenine molecule. An ordered water was found in proximity to the bound phosphate ion present in the active site, held by hydrogen bonding to N3 of adenine and Odelta1 of Asp-132. On the basis of the crystal structure, we propose that this water molecule is the nucleophile that participates in the dephosphorylation of the phosphoenzyme intermediate. Solvent isotope effect studies show that there is no rate-determining transfer of a solvent-derived proton in the transition state for the dephosphorylation of the phosphoenzyme intermediate. Such an absence of general base catalysis of water attack is consistent with the stability of the leaving group, namely, the thiolate anion of Cys-13. Consequently, adenine activates the enzyme by binding and orienting a water nucleophile in proximity to the phosphoryl group of the phosphoenzyme intermediate, thus increasing the rate of the dephosphorylation step, a step that is normally the rate-limiting step of this enzymatic reaction.  相似文献   

9.
Stieglitz KA  Roberts MF  Li W  Stec B 《The FEBS journal》2007,274(10):2461-2469
The structure of the first tetrameric inositol monophosphatase (IMPase) has been solved. This enzyme, from the eubacterium Thermotoga maritima, similarly to its archaeal homologs exhibits dual specificity with both IMPase and fructose-1,6-bisphosphatase activities. The tetrameric structure of this unregulated enzyme is similar, in its quaternary assembly, to the allosterically regulated tetramer of fructose-1,6-bisphosphatase. The individual dimers are similar to the human IMPase. Additionally, the structures of two crystal forms of IMPase show significant differences. In the first crystal form, the tetrameric structure is symmetrical, with the active site loop in each subunit folded into a beta-hairpin conformation. The second form is asymmetrical and shows an unusual structural change. Two of the subunits have the active site loop folded into a beta-hairpin structure, whereas in the remaining two subunits the same loop adopts an alpha-helical conformation.  相似文献   

10.
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.  相似文献   

11.
M D Fothergill  A R Fersht 《Biochemistry》1991,30(21):5157-5164
The crystal structures of two mutant tyrosyl-tRNA synthetases (TyrTS) are reported to test predictions from kinetic data about structural perturbations and also to aid in the interpretation of apparent strengths of hydrogen bonds measured by protein engineering. The enzyme-tyrosine and enzyme-tyrosyl adenylate complexes of the mutant, TyrTS(Cys----Gly-35), have been determined at 2.5- and 2.7-A resolution, respectively. Residue Cys-35 is in the ribose binding site. Small rearrangements in structure are seen in the enzyme-tyrosine complex that are localized around the cavity created by the mutation. The side chain of Thr-51 moves to occupy the cavity, and Ile-52 adopts two significantly populated conformations, one as in the native enzyme and a second unique to the mutant. On binding tyrosyl adenylate, Ile-52 in the mutant crystal structure preferentially occupies the conformation observed in the native structure. The side chain at Thr-51 becomes disordered. The double-mutant test, which was designed to detect interactions between residues, had previously shown a discrepancy of some 0.4 kcal/mol on mutating Cys-35 and Thr-51 separately and together. A crystal structure of a second mutant, delta TyrTS(Tyr----Phe-34), complexed with tyrosine has been determined at 2.7-A resolution. Tyr-34 in wild-type enzyme makes a hydrogen bond with the phenolic oxygen of the bound tyrosine substrate. The mutant crystal structure was solved to discover whether or not a water molecule binds to the substrate instead of the hydroxyl of Tyr-34 as the interpretation of apparent binding energies from site-directed mutagenesis experiments hinges crucially on whether there is access of water to the mutated region.  相似文献   

12.
T Tanaka  H Kato  T Nishioka  J Oda 《Biochemistry》1992,31(8):2259-2265
The function of the flexible loop which is disordered in crystal structure analysis of glutathione synthetase from Escherichia coli B has been investigated by limited proteolysis and kinetic measurements for the wild-type and mutant enzymes. Proteolysis of the intact enzyme using arginyl endopeptidase or trypsin brought about a time-dependent decrease in the enzymatic activity and the production of protein fragments. SDS-polyacrylamide gel electrophoresis and peptide sequence analysis showed that only a peptide bond between arginine 233 and glycine 234 in the loop was cleaved. Further, native polyacrylamide gel electrophoresis revealed that the cleaved enzyme retained almost the same quaternary structure as that of the wild-type enzyme. Upon protease treatment, the presence of substrates, ATP and/or gamma-L-glutamyl-L-cysteine (gamma-Glu-Cys), protected the loop from cleavage, but the presence of glycine was not capable of protecting it. In addition, replacement of arginine 233 in the loop with lysine by site-directed mutagenesis increased the Michaelis constants for gamma-Glu-Cys and glycine by factors of 28 and 213, respectively. The protection against cleavage on a similar protease incubation of this mutant enzyme was also observed in the presence of ATP and/or gamma-Glu-Cys, but the effect in the presence of both substrates was half as large as that for the wild-type enzyme. These results suggest that the loop covers the active site while ATP and gamma-Glu-Cys bind there and that it protects the unstable gamma-Glu-Cys phosphate intermediate from decomposition by bulk water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The activity of the Calvin cycle enzyme phosphoribulokinase is coupled to photosynthetic electron transport by reversible oxidation/reduction mediated by thioredoxin-f. Previous studies have shown that one of the regulatory sulfhydryl groups, that of Cys-16, is positioned at the nucleotide-binding domain of the active site. To determine if oxidative deactivation of the kinase reflects catalytic essentiality of Cys-16, the methylation of spinach phosphoribulokinase by methyl-4-nitrobenzenesulfonate has been examined. Methylation of the kinase results in a 50% loss of the initial activity relative to controls. The suppression of kcat is accompanied by a 6-fold increase in the Km for ATP, without change in the Km for ribulose 5-phosphate. The insensitivity of the modified enzyme, in contrast to the native, to iodoacetate and 5,5'-dithiobis(2-nitrobenzoate) indicates that Cys-16 is a site of methylation. This supposition is verified independently by peptide mapping and Edman degradation subsequent to S-carboxymethylation with [14C]iodoacetate of the methylated kinase. Retention of significant enzymatic activity after complete modification of Cys-16 with the small, uncharged methyl moiety demonstrates that this active-site residue is not essential for catalysis.  相似文献   

14.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

15.
Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity.  相似文献   

16.
The pyridoxal 5'-phosphate-dependent enzymes have been evolved to catalyze diverse substrates and to cause the reaction to vary. 1-Aminocyclopropane-1-carboxylate deaminase catalyzes the cyclopropane ring-opening reaction followed by deamination specifically. Since it was discovered in 1978, the enzyme has been widely investigated from the mechanistic and physiological viewpoints because the substrate is a precursor of the plant hormone ethylene and the enzymatic reaction includes a cyclopropane ring-opening. We have previously reported the crystal structure of the native enzyme. Here we report the crystal structures of the two reaction intermediates created by the mutagenesis complexed with the substrate. The substrate was validated in the active site of two forms: 1). covalent-bonded external aldimine with the coenzyme in the K51T form and 2). the non-covalent interaction around the coenzyme in the Y295F form. The orientations of the substrate in both structures were quite different form each other. In concert with other site-specific mutation experiments, this experiment revealed the ingenious and unique strategies that are used to achieve the specific activity. The substrate incorporated into the active site is reactivated by a two-phenol charge relay system to lead to the formation of a Schiff base with the coenzyme. The catalytic Lys51 residue may play a novel role to abstract the methylene proton from the substrate in cooperation with other factors, the carboxylate group of the substrate and the electron-adjusting apparatuses of the coenzyme.  相似文献   

17.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

18.
Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189–209) and loop B (res. 577–608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target.  相似文献   

19.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

20.
Substitutions for active-site lysyl residues at positions 166 and 329 in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been shown to abolish catalytic activity. Treatment of the Cys-166 and Cys-329 mutant proteins with 2-bromoethylamine partially restores enzyme activity, presumably as a consequence of selective aminoethylation of the thiol group unique to each protein. Amino acid analyses, slow inactivation of the wild-type carboxylase by bromoethylamine, and the failure of bromoethylamine to restore activity to the corresponding glycyl mutant proteins support this interpretation. The observed facile, selective aminoethylations may reflect an active site microenvironment not dissimilar to that of the native enzyme. Catalytic constants of these novel carboxylases, which contain a sulfur atom in place of a specific lysyl gamma-methylene group, are significantly lower than that of the wild-type enzyme. Furthermore, the aminoethylated mutant proteins form isolable complexes with a transition state analogue, but with compromised stabilities. These detrimental effects by such a modest structural change underscore the stringent requirement for lysyl side chains at positions 166 and 329. In contrast, the aminoethylated mutant proteins exhibit carboxylase/oxygenase activity ratios and Km values that are unperturbed relative to those for the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号