首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tang ZH  Liu GQ 《生理科学进展》2005,36(2):148-151
位于神经元和胶质细胞上的γ-氨基丁酸转运体(GAT)是调节GABA能神经元活动的重要糖蛋白。根据GAT的4种不同亚型的脑区及亚细胞分布特点,参与调节脑内GABA水平的可能是GAT-1和GAT-3。GAT表达异常或功能受损是癫痫发作时神经元高兴奋性的原因之一。对癫痫患者的海马标本和多种癫痫动物模型的研究表明,GABA能抑制性回路减少及其表达的GAT下降,GAT逆向转运功能障碍;原发性GAT表达增加,或某些刺激性伤害引起的GAT表达上调,也可诱发癫痫。随着对GAT结构与功能的进一步了解,调节GAT表达和功能的靶点将会进一步得到阐明,选择性作用于这些靶点的新化合物可能会对癫痫的治疗产生重大影响。  相似文献   

2.
糖皮质激素的抗痫作用及其与γ-氨基丁酸的关系   总被引:1,自引:1,他引:1  
为了探讨糖皮质激素的抗癫痫效应和作用机制, 本研究观察了糖皮质激素对戊四氮诱导的慢性点燃型癫痫大鼠的行为和脑电图的影响, 并应用免疫细胞化学双重染色技术探查了大脑皮质神经元内糖皮质激素受体(GR) 与γ- 氨基丁酸(GABA) 的共存情况。结果显示, 在慢性点燃型癫痫大鼠, 在点燃后的第3 天或第15 天, 先经静脉给予地塞米松(4m g/kg), 再经腹腔注射戊四氮(30m g/kg) 可明显减弱或完全抑制癫痫发作。免疫细胞化学双重染色证明, GR和GABA共存于大脑皮质部分神经元。以上结果提示, 糖皮质激素具有抗慢性癫痫的效应, 其作用机制可能与GR调节同一神经元内GABA的合成有关。  相似文献   

3.
γ-氮基丁酸(GABA)是脊椎动物脑内一种重要的神经递质.它与其特异性受体(即 GABAR)分子的相互作用,可引起该受体偶联的 Cl-,K+和 Ca2+通道传导的改变并产生神经元抑制效应.近年 GABAAR 基因及其表达的研究,已为不同的种属、不同脑区域和细胞类型中 GABAAR 的亚基组成、生理功能及其对很多中枢神经系统药物反应的多样性提供了令人信服的依据,可以预见不久这方面深入的探索也必将为有关该受体的神经精神病发病的分子机理研究及其治疗性药物的设计提出新的线索.  相似文献   

4.
一株食用菌生物转化富集γ-氨基丁酸条件研究   总被引:2,自引:0,他引:2  
从本实验室保存的食用菌中筛选到菌株CSP501,其菌丝体可以谷氨酸钠为底物转化富集γ-氨基丁酸。通过单因素试验和正交试验,菌株CSP501转化富集γ-氨基丁酸的最适条件:转化温度45℃,转化时间5h,体系pH4.0,底物浓度1%。γ-氨基丁酸的含量可以达到干重的1.05%,达到较高的含量。  相似文献   

5.
B型γ—氨基丁酸受体研究进展   总被引:10,自引:0,他引:10  
GABAB受体是近年来新发现的GABA受体亚型。它的活化在突触后膜增加K^+电导,引起长时程晚抑制性突触后电位;在突触前膜则抑制Ca^2+电导,使兴奋性或抑制性递质的释放减少,该受体活动对机体的镇痛、肌肉痉挛、癫痫的发作等生理和病理生理过程都有重要的影响。  相似文献   

6.
高等植物体内γ-氨基丁酸合成、代谢及其生理作用   总被引:30,自引:0,他引:30  
对γ-氨基丁酸(GABA)在植物体内的合成、代谢和与之有关的谷氨酸脱羧酶、γ-氨基丁酸转氨酶和琥珀酸半醛脱氢酶的特性,H 、Ca2 、CaM等因素对GABA合成代谢的影响和GABA在高等植物体内可能的生理作用作了介绍。  相似文献   

7.
本研究采用高效液相色谱-电化学法(high pressure/performance liquid chromatography-electrochemical detection,HPLC-ECD)观察电针刺激对帕金森病模型大鼠皮层、纹状体、腹侧中脑和小脑组织中神经递质含量的影响,以探讨电针减轻帕金森病行为症状的可能机制。在Sprague Dawley大鼠内侧前脑束(medial forebrain bundle,MFB)注射6-羟基多巴胺(6-hydroxydop-amine,6-OHDA),建立右侧损伤帕金森病大鼠模型,并将帕金森病大鼠随机分为模型组和100Hz电针治疗组(n=10),后者接受4个疗程(6天为一疗程)的头部百会穴(GV-20)及背部大椎穴(GV-14)电针刺激。另随机选取10只大鼠在MFB仅注射生理盐水(NS)作为假手术组。行为学测试观察电针治疗对阿扑吗啡诱导的大鼠异常旋转行为的影响,HPLC-ECD检测脑组织中γ-氨基丁酸(γ-aminobutyric acid,GABA)含量变化。结果显示,模型组大鼠出现了异常旋转行为,表明帕金森病造模成功。与假手术组相比,模型组大鼠皮层和纹状体损伤...  相似文献   

8.
γ-氨基丁酸对小白鼠离体胃标本胃酸分泌的促进效应   总被引:16,自引:0,他引:16  
为了探索γ-氨基丁酸(GABA)对小白鼠离体胃标本胃酸分泌(GAS)的影响及机制,在体外37℃缓冲液中培育离体、胃腔灌流并维持胃内12 cm水柱压力的全胃标本,用pHS-3型精密酸度计测定灌流液的pH。结果表明:γ-氨基丁酸(GABA)(1~10×10-7mol/L)和巴氯芬(Bac, 0.6~9.6×10-7mol/L)以一种浓度依赖的方式显著地促进胃酸分泌(GAS),而西咪替丁(Cim, 2~20×10-7mol/L)以一种浓度依赖的方式有力地抑制GAS。印防已毒素(Pic, 3×10-7mol/L)不影响基础胃酸分泌(BGAS)和GABA促进GAS的效应,而番氯芬(Phac, 0.6×10-7mol/L)能完全阻断GABA的促进效应。Cim不能完全消除GABA和Bac对GAS的促进效应。以上结果提示,在小鼠中GABA可以通过激活胃中GABAB受体促进离体胃标本的GAS,可能胃壁胆碱能神经元和非神经细胞,如壁细胞及某些内分泌细胞上都存在GABAB受体,GABA可直接或简接地剌激胃壁细胞分泌酸。  相似文献   

9.
目的 观察甜菜碱对癫痫大鼠血清中同型半胱氨酸以及对海马γ-氨基丁酸及其受体的影响.方法 将健康雄性Wistar大鼠随机分为正常对照组(腹腔注射生理盐水,1.0 mL生理盐水灌胃),癫痫组(腹腔注射戊四氮,1.0 mL生理盐水灌胃),甜菜碱高、中、低浓度组(腹腔注射戊四氮,甜菜碱灌胃),丙戊酸钠组(腹腔注射戊四氮,丙戊酸钠灌胃),实验结束后大鼠眼眶取血检测血清中同型半胱氨酸的含量;在低温条件下迅速取脑,ELISA实验检测γ-氨基丁酸含量的变化;兔疫荧光和Western bloting检测海马区γ-氨基丁酸受体的变化;取肝组织进行HE染色观察组织形态变化.结果 癫痫组同型半胱氨酸的含量与正常组比较显著降低(P<0.01),甜菜碱高、低浓度组同型半胱氨酸含量与癫痫组比较明显降低(P< 0.05);ELISA结果表明癫痫组γ-氨基丁酸的含量与正常对照组相比显著下降(P<0.01).甜菜碱高、中浓度组γ-氨基丁酸的含量与癫痫组比较显著增高(P<0.01);免疫荧光与Western bloting检测结果,癫痫组γ-氨基丁酸受体的表达与正常对照组相比显著降低(P<0.01),甜菜碱高、中、低浓度组较癫痫组显著升高(P<0.01);HE染色结果,丙戊酸钠组动物肝脏组织镜下观察可见明显的空泡变性(P<0.05).结论 甜菜碱具有较好的抗癫痫作用,且无肝毒性.  相似文献   

10.
γ-氨基丁酸(gamma-aminobutyric acid,GABA)是哺乳动物中枢神经系统主要的抑制性神经递质,并具有调节血压与心率、调节情绪、抗焦虑、抗抑郁、抗肿瘤、保肝护肾、调节激素分泌等生理功能。目前主要通过厌氧等技术处理植物原料、微生物发酵以及外源添加的方式加工富含GABA的食品,涉及富含GABA的茶叶、粮食、豆类制品、乳制品、糖果、饮料等食品的研究、专利及部分产品,但产品较少,今后需加强产业化。  相似文献   

11.
The motor signs of Parkinson's disease have been partly attributed to an overinhibition of the external globus pallidus (GP) that results from hyperactivity of striatopallidal GABA/enkephalinergic neurons. The goals of this study were to measure basal levels of extracellular fluid GABA in the GP of normal cats, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian cats and cats spontaneously recovered from MPTP-induced parkinsonism, and to examine the effects of opioid receptor activation on potassium (K+)-evoked GABA release in the GP in these animals. Basal GP GABA levels were increased 75% from normal in parkinsonian animals 1 week after MPTP administration and returned to control levels in recovered animals 6 weeks after MPTP administration. No significant differences were observed in K+-evoked GABA release across conditions. The opioid receptor agonist [D-Ala2]-Met-Enkephalinamide (DALA) significantly attenuated K+-evoked GABA release in the GP of MPTP-treated symptomatic and recovered cats, but had no significant effect on GABA release in normal animals. These data show that basal GP GABA levels are elevated coincident with expression of parkinsonian signs and return to normal in animals that have functionally compensated for a nigrostriatal lesion. DALA-induced inhibition of pallidal GABA release after a dopamine-depleting lesion, suggests that enkephalin may attenuate GABA release in the GP specifically after striatal dopamine loss.  相似文献   

12.
Antipsychotic drugs (APDs) have been primarily characterized for their effects on dopaminergic terminal regions in the brain, especially within the corpus striatum. Efferent GABA pathways are the primary outflow of striatal processing via their projections to the substantia nigra and the globus pallidus (GP). In the current study, we analyzed changes in pallidal GABA function following acute APD administration by means of in vivo microdialysis, followed by immunolabeling of presynaptic GABA terminal density in the contralateral hemisphere of the same animals. Acute administration of the atypical APD, clozapine (10 or 30 mg/kg, s.c.), produced a dose-dependent decrease in extracellular GABA. A corresponding dose-dependent increase in the density of presynaptic terminal GABA immunolabeling in the GP was found. In contrast, the typical APD, haloperidol (1 or 3 mg/kg, s.c.), had no significant effects on either measure, although a non-significant increase in extracellular GABA and decrease in the density of GABA terminal immunolabeling was noted. Paw retraction tests conducted during the time of microdialysis showed that haloperidol produced a typical pattern of highly pronounced motor impairment, while clozapine showed an atypical profile of minimal catalepsy. These complementary results obtained from in vivo neurochemistry and presynaptic neurotransmitter labeling suggest that systemic clozapine suppresses neuronal GABA release within the GP. This decrease in released pallidal GABA may play a role in the low motor side-effect liability of atypical APDs.  相似文献   

13.
《Cell reports》2023,42(1):111952
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

14.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

15.
16.
Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is an established surgical technique for the treatment of movement disorders. The objective of this study was to propose a computational stereotactic model of the electrical distribution around the electrode within the targeted GPi in order to optimize parameter adjustment in clinical practice. The outline of the GPi can be defined precisely by using stereotactic magnetic resonance imaging (MRI) and from this it is possible to model its three-dimensional structure. The electrode and the distribution of the patient-specific parameters can then be co-registered with the GPi volume. By using this methodology, it is possible to visualize and measure the relationship between the electrical distribution of patient-specific parameters and the morphology of the GPi. The model could be applied in clinical practice to help determine the threshold for achieving a therapeutic effect and consequently may aid in optimizing parameter settings for individual patients.  相似文献   

17.
To determine the involvement of the globus pallidus in mediating epilepsy, the effects of microinjection of a GABA uptake blocker (tiagabine), a benzodiazepine agonist (zolpidem) and a GABA-B receptor agonist (baclofen) on pentylenetetrazol (PTZ)-induced tonic seizure were examined in adult rats. Administration of PTZ induced tonic seizures in all control animals, accompanied with a 100% mortality rate. Pretreatment with bilateral intrapallidal microinjection of tiagabine (1 mM) suppressed the incidence of tonic seizures to 67.7% and reduced the mortality rate to 16.7%. Furthermore, the latency to tonic seizures was 1,275 ± 277 s, which was significantly longer than that of the corresponding control animals (319 ± 225 s). On the other hand, administration of zolpidem (1 mM) was without significant effects on the mortality rate, the incidence and latency of the tonic seizure. In sharp contrast, microinjection of baclofen (1mM) completely suppressed PTZ-induced tonic seizures and reduced the mortality rate to 0%. This effect was largely abolished by co-injection of the GABA-B receptor antagonist CGP55845. To elucidate the direct cellular action of baclofen, the excitability and membrane potential of globus pallidus neurons were studied by cell-attached and whole-cell patch-clamp recordings in the brain slice. Bath application of baclofen (50 µM) significantly reduced the firing of these neurons, and was often accompanied by a clear membrane hyperpolarization, in a CGP55845-sensitive manner. These data suggest that activation of GABA-B receptors in globus pallidus could significantly modulate PTZ-induced tonic seizures.  相似文献   

18.
The effects of endogenous and synthetic peptides containing GABA or its analogues on the GABA/benzodiazepine/chloride ionophore, complex, GABAB receptor, Cl fluxes, GABA release and GABA uptake were studied using synaptic membranes, crude synaptoneurosomal preparations and slices prepared from the rat and mouse brain. The sodium-independent binding of GABA was strongly inhibited by GABA-histidine, followed by -glutamyl-homotaurine, GABA-glycine and -glutamyl-GABA. The binding of diazepam was slightly enhanced by the same peptides. The peptides alone had no effect on the chloride fluxes, but GABA-histidine, -glutamyl-GABA and GABA-glycine enhanced while -glutamyl-homotaurine and GABA-taurine inhibited GABA-stimulated chloride uptake. GABA-histidine was the most effective displacer of baclofen binding, but -glutamyl-homotaurine was entirely ineffective. The uptake of GABA was markedly inhibited in synaptosomal preparations by GABA-histidine, while all other peptides were less effective. -Glutamyl-taurine attenuated but -glutamyl-homotaurine and GABA-glycine enhanced the potassium-stimulated release of GABA. The present actions of GABA-histidine in vitro may be of significance for GABAergic neurotransmission in vivo.  相似文献   

19.
Microinjection of neurotensin (NT; 2 and 5 μg) into the substantia nigra zona compacta caused an increase in dopamine (DA) and DA metabolites in the rodent globus pallidus and striatum which persisted for at least 20 hours after peptide administration. Similar NT treatments given unilaterally into the nigra caused circling away from the injected side in amphetamine-pretreated rats, but were without effect when microinjected into saline-pretreated animals. Circling also occurred when the animals were given amphetamine 20 hours after intranigral NT administration. Contralateral rotation was observed with unilateral intranigral injections of gamma-hydroxybutyric acid (GHB; 400 μg) or with lower intranigral GHB doses (250 μg) in amphetamine-pretreated animals. The effects of GHB and NT differed in the manner in which the animals rotated as well as in the profile of DA and DA metabolite changes induced by these drugs. These studies indicated that: (1) dopaminergic functions of the globus pallidus are influenced, like the striatum, by manipulations of the substantia nigra; (2) NT and GHB likely act via different mechanisms to effect nigral dopamine-containing cells; and (3) NT was capable of inducing changes in dopamine neurons which had long term consequences.  相似文献   

20.
The Albin-DeLong 'box and arrow' model has long been the accepted standard model for the basal ganglia network. However, advances in physiological and anatomical research have enabled a more detailed neural network approach. Recent computational models hold that the basal ganglia use reinforcement signals and local competitive learning rules to reduce the dimensionality of sparse cortical information. These models predict a steady-state situation with diminished efficacy of lateral inhibition and low synchronization. In this framework, Parkinson's disease can be characterized as a persistent state of negative reinforcement, inefficient dimensionality reduction, and abnormally synchronized basal ganglia activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号