首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limbs and supporting structures of an organism experience a full weight of its own when it lands from water, because neutral buoyancy in the aquatic habitat will be no longer available in the terrestrial world. Metamorphosis of anuran amphibians presents a good research model to examine how this transition from non-loading to weight-loading affects development of motor capacity at the time of their first emergence on land. Our video analysis of the transitional anurans, Rana catesbeiana, at Gosner stage 46 (the stage of complete transformation) demonstrated that the take-off speed increased 1.23-fold after the first six hours of weight-loading on the wet ground. It did not increase further during the following three days of loading, and was close to the level of mature frogs with different body mass. During development of larvae in deep water with no chance of landing through metamorphosis, both tension and power of a hindlimb anti-gravity muscle increased 5-fold between stages 37 and 46. However, the muscle contractility increased more rapidly when the larvae could access the wet ground by their natural landing behavior after stages 41-42. Muscle power, one of major factors affecting locomotory speed, was 1.29-fold greater in the loaded than in the non-loaded larvae at the transitional stage. Thus, weight-loading had a potentially significant effect on the elevation of motor capacity, with a similar extent of increment in locomotory speed and muscle power during the last stages of metamorphosis. Such a motor adjustment of the froglets in a relatively short transitional period would be important for effective ecological interactions and survival in their inexperienced terrestrial life.  相似文献   

2.
While developmental plasticity can facilitate evolutionary diversification of organisms,the effects of water levels as an environmental pressure on tiger frogs remains unclear.This study clarifies the relationship by studying the responses of tiger frog(Hoplobatrachus chinensis)tadpoles to simulated hydroperiods(i.e.,constant low water levels,constant high water levels,increasing water levels,decreasing water levels,rapid changes in water levels and gradual fluctuations in water levels)in a laboratory setting.ANOVA analysis showed that none of the water level treatments had any significant effect on the total length,body mass,or developmental stages of H.chinensis tadpoles half way through development(11 days old).Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis,whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis.None of the water level treatments had a significant effect on the snout-vent length(SVL)or body mass of H.chinensis tadpoles at Gosner stage 42,or on the body mass of tadpoles at Gosner stage 45.However,the tadpoles raised in high levels and rapidly fluctuating water levels,significantly larger SVL at Gosner stage 45,while ones under gradually fluctuating water levels had smaller SVL than the other groups.Time to metamorphosis was positively correlated with body size(SVL)at metamorphosis in H.chinensis tadpoles.H.chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments(G-test).Moreover,ANOVA and ACNOVA(with body length as the covariate)indicated that water levels had no significant effect on either the morphology(i.e.head length,head width,forelimb length,hindlimb length and body width)or the jumping ability of juvenile H.chinensis.These results suggest that the observed accelerated metamorphosis and high mortality of H.chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interactions among increasing conspecifics.  相似文献   

3.
4.
The effect of echinostome infections on the survival of Rana pipiens tadpoles was examined in relation to developmental stage of tadpoles. Individual tadpoles of Gosner stages 25, 27, 32-33, and 37-39 were exposed to 1 of 4 levels of cercariae (0, 20, 50, or 100). Only tadpoles at stage 25, the earliest stage infected, died within a 5-day experimental period. This stage-specific mortality rate could be explained, in part, by the stage-specific location of encystment of cercariae, which was documented in a separate experiment. In accordance with kidney development, cercariae predominately encysted in the pronephroi during early stages of tadpole development (stages 25 through 31-32) and only in the mesonephroi and associated ducts at later stages (stages 37 through 46). As the mesonephros develops, renal capacity presumably increases. Thus, tadpoles died only when metacercariae concentrated in the functional portion of the kidney with the most limited renal capacity. As tadpoles aged, they also became less susceptible to infections. On average, 69.5% of cercariae that were exposed to stage 25-26 tadpoles successfully encysted. compared with only 8.4% of cercariae exposed to stage 37-38 tadpoles. Exposures of metamorphic frogs (poststage 46) to cercariae revealed that these individuals can become infected with echinostomes. Collectively, our data highlight the host stage-dependent dynamics of tadpole-echinostome interactions.  相似文献   

5.
为研究花背蟾蜍(Bufo raddei)蝌蚪在变态发育期皮肤的显微结构特点,选取G19、G22、G26、G36、G41、G43和G46共7个发育期蝌蚪的连续石蜡切片及成体的背部皮肤切片,采用H.E和AB-PAS染色方法,观察了皮肤各层结构的发育时序并进行了相应的测量.结果表明,在G19、G22和G26蝌蚪表皮均为1层细胞;G36蝌蚪皮肤细胞形态和层数在背腹部出现了显著的区别;在G41基本完成了表皮2层细胞的构建;G43期完成完整的真皮构建,其中分布有毛细血管和2种皮肤腺.G46皮肤在厚度、腺体和毛细血管分布等方面表现出了明显的区域性差异,并与成体皮肤结构有明显的差别,显示出蝌蚪在发育过程中皮肤结构的变化与其生存环境之间紧密的关联性.  相似文献   

6.
To understand the mechanisms that allow tadpoles of the African clawed frog Xenopus laevis to develop under conditions of impaired convective transport (hemoglobin poisoning with carbon monoxide), whole animal surface area and volume were measured and bulk oxygen diffusion was modeled at four developmental stages (from initiation of heartbeat to pre-metamorphic climax). Surface area [8.5 mm2 at stages Nieuwkoop-Faber (NF) 33-34 to 70.2 mm2 at stages NF 50-51] and volume (1.8 mm3 at stages NF 33-34 to 35.7 mm3 at stages NF 50-51) measured from volumetric analysis from dual plane images of each animal were not significantly different between treatments. Bulk oxygen radial diffusion was estimated by modeling the larvae as a set of adjacent cylinders with different radii. The model was used to predict the oxygen tension at the water-skin interface at which the oxygen tension in the center of the animal is nil (0.7 kPa at stage NF 33-34 and 14.0 kPa at stage NF 50-51), suggesting that bulk oxygen diffusion is sufficient to meet the metabolic demand up to stages NF 46-47 irrespective of the oxygen tension at the water-skin interface. At NF 50-51 an anoxic core in the animal would appear if bulk oxygen diffusion were the only means of oxygen transport at oxygen tensions below 15 kPa. However, the relative volume of the anoxic core would only exceed 10% of the total volume of the animal only at oxygen tensions below 5 kPa. Therefore, the ten-fold increase in mass between NF 50-51 and metamorphosis would prove insufficient for embryonic oxygen requirements via simple diffusion, and therefore would require additional transport mechanisms.  相似文献   

7.
In adult Xenopus serum, albumin gene expression is regulated by estrogen through the selective destabilization of its mRNA during the vitellogenic response. The present study reports the cDNA sequence of both the 68K and 74K Xenopus albumin mRNAs, their derived amino acid sequence, and the regulation of albumin gene expression during embryogenesis. Albumin mRNA has a 39 nucleotide 5' untranslated region terminating in a consensus translation initiation site. The derived amino acid sequence yields a 24-amino acid hydrophobic leader sequence (terminating in Lys-Arg) that shares significant homology with the leader peptide of rat albumin. Overall there is 37% sequence identity between rat and frog albumin, with exact conservation of all but one Cys residue and the Pro residues responsible for the three domain structure of the mature protein. The 74K albumin (unlike the 68K albumin) is glycosylated; a point mutation converting Lys256 to Asn introduces an N-linked glycosylation site that is similar to one found in the sequence of mammalian alpha-fetoproteins. A larval albumin-like protein was not detectable by silver staining in serum of tadpoles before the beginning of metamorphosis at stage 48. Albumin mRNA is absent from early tadpoles (stages 22-47); however, it is rapidly induced at stage 48 as one of the earliest manifestations of metamorphosis. Exposure of embryos to 10(-8) M T3, which regulates amphibian metamorphosis, resulted in the premature induction of albumin mRNA, such that it is evident by stage 43.  相似文献   

8.
Amphibian tadpoles are postulated to excrete ammonia as nitrogen metabolites but to shift from ammonotelism to ureotelism during metamorphosis. However, it is unknown whether ureagenesis occurs or plays a functional role before metamorphosis. Here, the mRNA-expression levels of two urea cycle enzymes (carbamoyl phosphate synthetase I [CPSI] and ornithine transcarbamylase [OTC]) were measured beginning with stage-47 Xenopus tadpoles at 5 days post-fertilization (dpf), between the onset of feeding (stage 45, 4 dpf) and metamorphosis (stage 55, 32 dpf). CPSI and OTC expression levels increased significantly from stage 49 (12 dpf). Urea excretion was also detected at stage 47. A transient corticosterone surge peaking at stage 48 was previously reported, supporting the hypothesis that corticosterone can induce CPSI expression in tadpoles, as found in adult frogs and mammals. Stage-46 tadpoles were exposed to a synthetic glucocorticoid, dexamethasone (Dex, 10–500 nM) for 3 days. CPSI mRNA expression was significantly higher in tadpoles exposed to Dex than in tadpoles exposed to the vehicle control. Furthermore, glucocorticoid receptor mRNA expression increased during the pre-metamorphic period. In addition to CPSI and OTC mRNA upregulation, the expression levels of three gluconeogenic enzyme genes (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1) increased with the onset of urea synthesis and excretion. These results suggest that simultaneous induction of the urea cycle and gluconeogenic enzymes coincided with a corticosterone surge occurring prior to metamorphosis. These metabolic changes preceding metamorphosis may be closely related to the onset of feeding and nutrient accumulation required for metamorphosis.  相似文献   

9.
If an organism''s juvenile and adult life stages inhabit different environments, certain traits may need to be independently adapted to each environment. In many organisms, a move to a different environment during ontogeny is accompanied by metamorphosis. In such organisms phenotypic induction early in ontogeny can affect later phenotypes. In laboratory experiments we first investigated correlations between body morphology and the locomotor performance traits expressed in different life stages of the common frog, Rana temporaria: swimming speed and acceleration in tadpoles; and jump-distance in froglets. We then tested for correlations between these performances across life stages. We also subjected tadpoles to unchanging or decreasing water levels to explore whether decreasing water levels might induce any carry-over effects. Body morphology and performance were correlated in tadpoles; morphology and performance were correlated in froglets: hence body shape and morphology affect performance within each life stage. However, performance was decoupled across life stages, as there was no correlation between performance in tadpoles and performance in froglets. While size did not influence tadpole performance, it was correlated with performance of the metamorphosed froglets. Experiencing decreasing water levels accelerated development time, which resulted in smaller tadpoles and froglets, i.e., a carry-over effect. Interestingly, decreasing water levels positively affected the performance of tadpoles, but negatively affected froglet performance. Our results suggest that performance does not necessarily have to be correlated between life stages. However, froglet performance is size dependent and carried over from the tadpole stage, suggesting that some important size-dependent characters cannot be decoupled via metamorphosis.  相似文献   

10.
Amphibians exhibit extreme plasticity in the timing of metamorphosis, and several species respond to water availability, accelerating metamorphosis when their ponds dry. We analyzed the plasticity of the developmental response to water volume in Rhinella schneideri tadpoles. We raised tadpoles in mesocosm. Covariation between body size at metamorphosis and timing of development was positive. Nevertheless, the first approximately 53% of the metamorphoses finishing the cycle required between 34 and 56 days, and the covariation between body size at metamorphosis and timing of development was negative. For these tadpoles, the larval density and the presence of predators did not significantly affect their mass to metamorphosis. Nevertheless, predators affected time to metamorphosis. For the remainder of the tadpoles that reached metamorphosis at > 56 days, the relationship between body size at metamorphosis and timing of development was positive. For these tadpoles, larval density was important for mass at metamorphosis and presence of predators was also important for time to metamorphosis. Two dominant features were observed: (i) approximately 53% of metamorphs had morphological features similar to individuals developing in desiccating ponds, and (ii) the other individuals had morphological characteristics comparable to metamorphs developing in an unchanging environment.  相似文献   

11.
M. L. Crump 《Oecologia》1989,78(4):486-489
Summary Bufo periglenes, a toad endemic to montane Costa Rica, produces an unusually small clutch of large, yolk-rich eggs. The toads breed in small ephemeral pools that are unpredictable in duration and may be low in food availability. Two congeners, Bufo coniferus and Bufo marinus, occur nearby, breed in more permanent bodies of water that offer more food, and exhibit the typical toad pattern of large clutches of small eggs. Tadpoles of all three species feed on detritus and suspended organic material. By raising tadpoles of the three species individually with and without food I investigated the relationship between egg size (yolk provision) and tadpole survival. All of the unfed B. coniferus and B. marinus tadpoles grew little and died soon after developing to the hindlimb bud stage. On the other hand, all of the unfed B. periglenes tadpoles metamorphosed successfully, demonstrating that the tadpoles are facultatively non-feeding; developmental time from hatching to metamorphosis was significantly shorter for unfed tadpoles than for fed tadpoles, but fed individuals were significantly larger at transformation. Faster developmental rate and larger body size at transformation are both advantageous for frogs and toads, but cannot be attained simultaneously. Large egg size may afford flexibility in unpredictable environments. In pools where food is available, tadpoles presumably eat, take longer to metamorphose, but are larger at transformation than tadpoles developing in nutrient-poor sites. Small body size at transformation (a consequence of not eating) has potential costs, but the large quantity of yolk provided by a large egg enhances the probability of metamorphosis in food-limited environments.  相似文献   

12.
全球气候变暖引发栖息地干涸将对生活在水中的无尾类幼体提出了挑战。通过浙江丽水中华大蟾蜍(Bufo gargarizans)和黑眶蟾蜍(Duttaphrynus melanosticus)蝌蚪在实验条件下对不同水位变化的表型响应,检测表型可塑性的遗传性和环境近因性影响。结果表明,水位变化对中华大蟾蜍蝌蚪早期发育历期、头宽和体重影响不显著,对体长影响显著,其中逐减水位最大、恒低水位最小,慢波、恒高与快波、逐增水位依次减少;水位变化对黑眶蟾蜍蝌蚪早期发育历期、体长、头宽和体重影响均显著;发育历期以恒高水位最大,恒低水位最小;体长以逐减水位最大,恒低、快波和慢波水位显著偏小,逐增和快波水位居中;头宽以恒低水位最小,逐增水位居中,其余较大;体重以恒低水位最小、恒高水位最大,其余居中。水位变化对中华大蟾蜍蝌蚪的变态时间、体长、头宽和体重影响均不显著;水位变化对黑眶蟾蜍蝌蚪的变态时间、体长和体重影响均显著,对头宽影响不显著;恒低水位的变态时间最长,恒高水位的变态时间最短,其他水位变化之间差异不显著;恒高水位的体长最大,恒低和快波水位最小,其他居中;逐增和快波水位的体重最大,恒低水位最小。研究结果表明,繁殖季节不同的中华大蟾蜍和黑眶蟾蜍蝌蚪响应水位变化的表型可塑性差异显著,长期在容易发生干旱和水位变化的冬季繁殖的中华大蟾蜍蝌蚪的表型可塑性低,在雨水充沛的春季繁殖的黑眶蟾蜍蝌蚪的表型可塑性高,表现出表型可塑性的种间差异和遗传性;在早期发育过程中,两种蝌蚪体长的共同的表型变异与缺乏遗传基础的环境近因性影响有关;黑眶蟾蜍蝌蚪对低水位或水位下降作出减速分化的消极响应,响应程度与环境信号的强弱直接相关。  相似文献   

13.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

14.
Two-dimensional gel electrophoresis has been used to analyse protein synthesis in the livers of Xenopus laevis larvae during metamorphosis. The patterns found at different developmental stages have been characterised and compared to those found in developmentally static tadpoles and estrogen-treated tadpoles. The results suggest that the majority of proteins synthesized by the larval liver during metamorphosis can be divided equally into three main categories: those which are synthesized continuously, those whose synthesis is lost, and those whose synthesis is gained during development. The synthesis of proteins tends to be lost earlier in metamorphosis than it is gained. The pattern of liver protein synthesis in thyrostatic animals is not characteristic of any single stage of normal development, and displays features characteristic of many different stages. About half the changes in protein synthesis which occur during normal metamorphosis are dependent upon it. All the stages examined are responsive to estrogen, and each has a characteristic response. Half of the estrogen-induced changes in protein synthesis are independent of metamorphosis, while the other half require metamorphosis.  相似文献   

15.
Studies have been made of the effect of transmural electrical stimulation on twitch tension produced by atropinized ventricular preparations from tadpoles and adult frogs. In preparations from tadpoles at stage 42 and all the following stages, as well as in adult frogs, transmural electrical stimulation evoked positive inotropic responses which consisted of a slow propranolol-sensitive component or of a slow and fast components. It is highly probable that the slow component is induced by adrenergic transmitter. The fast propranolol-resistant component appears at stage 43. It may be prevented by bretilium being probably induced by a comediator which is released together with the adrenergic transmitter from the sympathetic nerve endings.  相似文献   

16.
17.
Many amphibian species exploit temporary or even ephemeral aquatic habitats for reproduction by maximising larval growth under benign conditions but accelerating development to rapidly undergo metamorphosis when at risk of desiccation from pond drying. Here we determine mechanisms enabling developmental acceleration in response to decreased water levels in western spadefoot toad tadpoles (Pelobates cultripes), a species with long larval periods and large size at metamorphosis but with a high degree of developmental plasticity. We found that P. cultripes tadpoles can shorten their larval period by an average of 30% in response to reduced water levels. We show that such developmental acceleration was achieved via increased endogenous levels of corticosterone and thyroid hormone, which act synergistically to achieve metamorphosis, and also by increased expression of the thyroid hormone receptor TRΒ, which increases tissue sensitivity and responsivity to thyroid hormone. However, developmental acceleration had morphological and physiological consequences. In addition to resulting in smaller juveniles with proportionately shorter limbs, tadpoles exposed to decreased water levels incurred oxidative stress, indicated by increased activity of the antioxidant enzymes catalase, superoxide dismutase, and gluthatione peroxidase. Such increases were apparently sufficient to neutralise the oxidative damage caused by presumed increased metabolic activity. Thus, developmental acceleration allows spadefoot toad tadpoles to evade drying ponds, but it comes at the expense of reduced size at metamorphosis and increased oxidative stress.  相似文献   

18.
中华大蟾蜍蝌蚪变态过程中脊椎骨化次序   总被引:2,自引:0,他引:2  
两栖动物在幼体变态即由水栖到陆栖的环境转变中,骨骼系统会发生重塑。本文采用茜素红和阿利新蓝的双染色技术对不同发育阶段中华大蟾蜍(Bufo gargarizans)蝌蚪变态过程中(Gosner 38~46)脊椎骨的发育进程进行了形态学研究。结果显示,在中华大蟾蜍蝌蚪Gosner 39期,椎板中线处发生融合;荐前椎Ⅱ-Ⅷ和荐椎的椎体、椎弓起始骨化发生在Gosner 42期;其次荐前椎Ⅱ-Ⅷ和荐椎的横突、底索和荐后椎Ⅰ开始骨化;荐后椎Ⅱ骨化最晚;在Gosner 46期,尾杆骨最终形成。荐后椎愈合形成尾杆骨反映无尾类幼体由水栖环境转变为陆生环境中骨骼系统的机能适应。  相似文献   

19.
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex.  相似文献   

20.
A. G. Nicieza 《Oecologia》2000,123(4):497-505
Age and size at metamorphosis are two important fitness components in species with complex life cycles. In anurans, metamorphic traits show remarkable phenotypic plasticity, especially in response to changes in growth conditions. It is also possible that the perception of risk directly determines changes in larval period and the size of metamorphs. This study examines how the perception of predation risk affects the timing of and size at metamorphosis in common frogs (Rana temporaria). I raised tadpoles at two risk levels (fish-conditioned water or unconditioned water) crossed with the availability or lack of food at night (all tadpoles had food available in the day). Tadpoles reacted to chemical cues from predatory fish by decreasing activity. A novel behavioural result was a predation×food interaction effect on refuge use, which also accounted for most of the predator main effect: predation risk only caused increased refuge use in the night-starved treatment. Despite these behavioural modifications, the perception of predation risk did not affect growth rate and mass at metamorphosis in a simple way: the effects of food regime on growth and size at metamorphosis were dependent on the level of predation risk as revealed by significant predation×food interaction effects. Tadpoles who had food withheld at night metamorphosed at the smallest size, suggesting a negative relationship between size at metamorphosis and refuge use. Tadpoles raised in fish-conditioned water had longer larval periods than those in unconditioned water, but these differences were significant only if food was available at night. These results conflict with the hypotheses that tadpoles should reduce their larval period or growth rates (and hence metamorphose at a smaller size) as the risk of predation increases. In contrast to predation risk, food availability strongly affected the length of the larval period: night-starved tadpoles metamorphosed relatively early with or without fish stimulus. Thus, early metamorphosis resulted from periods of low food availability, but not from a heightened ”perceived risk” of predation. This example counters the hypothesis of acceleration of the developmental rate (which shortens the time to metamorphosis) as a mechanism to escape a risky environment. Received: 18 August 1999 / Accepted: 10 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号