首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied dynamics of cell surface expression ofproteolytically activated thrombin receptor (PAR-1) in human pulmonaryartery endothelial cells (HPAEC). PAR-1 activation was measured bychanges in cytosolic calcium concentration([Ca2+]i)and HPAEC retraction response (determined by real-time transendothelial monolayer electrical resistance).[Ca2+]iincrease in response to thrombin was abolished by preexposure to 25 nMthrombin for >60 min, indicating PAR-1 desensitization, butpreexposure to 25 nM thrombin for only 30 min or to 10 nM thrombin forup to 2 h did not desensitize PAR-1. Exposure to 10 or 25 nM thrombindecreased monolayer electrical resistance 40-60%. Cellspreexposed to 10 nM thrombin, but not those preexposed to 25 nMthrombin, remained responsive to thrombin 3 h later. Loss of cellretractility was coupled to decreased cell surface PAR-1 expression asdetermined by immunofluorescence. Cell surface PAR-1 disappeared uponshort-term (30 min) thrombin exposure but reappeared within 90 minafter incubation in thrombin-free medium. Exposure to 25 nM thrombinfor >60 min prevented rapid cycloheximide-insensitive PAR-1reappearance. Cycloheximide-sensitive recovery of cell surface PAR-1expression required 18 h. Therefore, both duration and concentration ofthrombin exposure regulate the time course of recovery of HPAEC surfacePAR-1 expression. The results support the hypothesis that initialrecovery of PAR-1 surface expression in endothelial cells results froma rapidly mobilizable PAR-1 pool, whereas delayed recovery results fromde novo PAR-1 synthesis. We conclude that thrombin itself regulatesendothelial cell surface PAR-1 expression and that decreased surfaceexpression interferes with thrombin-induced endothelial cell activation responses.

  相似文献   

2.

Background

The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function.

Methodology/Principal Findings

Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host’s side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1’s extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin.

Conclusions/Significance

Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination.  相似文献   

3.
We studied the effects of protein kinase C (PKC) activation onendothelial cell surface expression and function of the proteolytically activated thrombin receptor 1 (PAR-1). Cell surface PAR-1 expression was assessed by immunofluorescence (using anti-PAR-1 monoclonal antibody), and receptor activation was assessed by measuring increases in cytosolic Ca2+ concentration inhuman dermal microvascular endothelial cells (HMEC) exposed to-thrombin or phorbol ester,12-O-tetradecanoylphorbol-13-acetate (TPA).Immunofluorescence showed that thrombin and TPA reduced the cellsurface expression of PAR-1. Prior exposure of HMEC to thrombin for 5 min desensitized the cells to thrombin, indicating homologous PAR-1desensitization. In contrast, prior activation of PKC with TPA produceddesensitization to thrombin and histamine, indicatingheterologous PAR-1 desensitization. Treatment of cells withstaurosporine, a PKC inhibitor, fully prevented heterologous desensitization, whereas thrombin-induced homologous desensitization persisted. Depletion of PKC isozymes(PKCI andPKCII) by transducing cellswith antisense cDNA of PKCIprevented the TPA-induced decrease in cell surface PAR-1 expression andrestored ~60% of the cytosolic Ca2+ signal in response tothrombin. In contrast, depletion of PKC isozymes did not affect theloss of cell surface PAR-1 and induction of homologous PAR-1desensitization by thrombin. Therefore, homologous PAR-1desensitization by thrombin occurs independently of PKC isozymes,whereas the PKC-activated pathway is important in signaling heterologous PAR-1 desensitization in endothelial cells.

  相似文献   

4.
Abstract: Previous studies have demonstrated that thrombin can induce potent effects on neural cell morphology, biochemistry, and viability. Nearly all of these effects are mediated by proteolytic activation of the thrombin receptor (PAR-1). Mechanisms of PAR-1 regulation in several nonneural cell types have been shown to be novel and cell type specific; however, little is known about PAR-1 regulation in neural cells. In the present study, PAR-1 cell surface expression and regulation were examined in a transformed retinoblast (Ad12 HER 10) cell line using radioiodinated anti-PAR-1 monoclonal antibodies ATAP2, which recognizes intact and cleaved receptors, and SPAN12, which is specific for the intact form of the receptor. Scatchard analysis revealed high-affinity, specific binding to a single affinity class of receptors: KD = 3.13 and 5.25 nM, Bmax = 190.1 and 67.8 fmol/mg of protein for 125I-ATAP2 and 125I-SPAN12, respectively. Specificity for PAR-1 was confirmed by demonstrating rapid and near complete decreases for both antibodies following treatment with thrombin or PAR-1 activating peptide (SFLLRN). Differential antibody binding was used to demonstrate rapid and near complete thrombin-induced PAR-1 cleavage and internalization, with protein synthesis-dependent replacement of intact receptors occurring over longer time intervals, but only minimal recycling of cleaved receptors. A variety of factors and conditions were screened for their effects on PAR-1 expression. Significant decreases in PAR-1 expression were induced by the protein kinase C activator phorbol 12-myristate 13-acetate (87% at 3 h), the phospholipid inflammatory mediator lysophosphatidic acid (32% at 3 h), and the injury-related condition hypoglycemia (64 and 100% at 24 h in the absence and presence of dibutyryl cyclic AMP, respectively). The effect of hypoglycemia was shown by RNase protection to be at least partially pretranslational. Finally, thrombin's ability to enhance hypoglycemia-induced cell killing correlated temporally with PAR-1 cell surface expression.  相似文献   

5.
6.
Kawabata A  Kawao N  Kuroda R  Tanaka A  Shimada C 《Peptides》2002,23(6):1181-1183
We examined if thrombin or a receptor-activating peptide for protease-activated receptor-1 (PAR-1), a thrombin receptor, could modulate nociception at peripheral levels. Intraplantar administration of PAR-1 activators, thrombin or TFLLR-NH(2), but not its inactive control FTLLR-NH(2) or a PAR-2 activator SLIGRL-NH(2), significantly attenuated the hyperalgesia in rats treated with carrageenan, although they had no effect on nociception in na?ve rats. The thrombin-PAR-1 system might thus act to attenuate nociception during inflammatory hyperalgesia.  相似文献   

7.
Protease-activated receptor-2 (PAR-2) is abundantly expressed in gastric mucosal chief cells, facilitating pepsinogen secretion. In the present study, we investigated whether PAR-1, a thrombin receptor, could modulate pepsinogen secretion in rats. The PAR-1-activating peptide TFLLR-NH(2) as well as the PAR-2-activating peptide SLIGRL-NH(2), administered i.v. repeatedly at 1-h intervals, significantly increased gastric pepsinogen secretion over 2-4 h (after two to four doses). In contrast, the control peptide FTLLR-NH(2), given in the same manner, had no such effect. Thus, PAR-1, like PAR-2, might function to facilitate pepsinogen secretion, suggesting a novel role of the thrombin-PAR-1-pathway in the stomach.  相似文献   

8.
BackgroundSarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known.PurposeThis study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN.MethodsStreptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar.ResultsSar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs.ConclusionSar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.  相似文献   

9.
A polypeptide corresponding to the extracellular domain of protease-activated receptor 3 (PAR-3) is hydrolyzed by thrombin slowly because of high K(M) (>100 microM). However, thrombin is found to bind two PAR-3, one without catalyzing hydrolysis or blocking the active site, while the other is hydrolyzed. In a solvent lacking Na(+), hydrolysis of a nitroanilide substrate is enhanced 1.6-fold by addition of PAR-3 polypeptide, with half-saturation at 2.5 microM. In contrast, the fibrinogen clotting activity of thrombin is inhibited completely by PAR-3, with a K(I) of 3 microM. None of the activities of thrombin are affected by addition of 50 microM PAR-4 polypeptide. Thus, PAR-3 in low concentrations binds thrombin in a configuration that blocks the anion-binding exosite but not the catalytic site, while hydrolysis of PAR-3, PAR-4, and other substrates that do not interact with exosite I persists. The allosteric effect of PAR-3 is characteristic of that of Na(+).  相似文献   

10.
Thrombin is a multifunctional coagulation protease with pro- and anti-inflammatory vascular effects. We questioned whether thrombin may have segmentally differentiated effects on pulmonary endothelium. In cultured rat endothelial cells, rat thrombin (10 U/ml) recapitulated the previously reported decrease in transmonolayer electrical resistance (TER), F-actin stress fiber formation, paracellular gap formation, and increased permeability. In contrast, in rat pulmonary microvascular endothelial cells (PMVEC), isolated on the basis of Griffonia simplicifolia lectin recognition, thrombin increased TER, induced fewer stress fibers, and decreased permeability. To assess for differential proteinase-activated receptor (PAR) expression as a basis for the different responses, PAR family expression was analyzed. Both pulmonary artery endothelial cells and PMVEC expressed PAR-1 and PAR-2; however, only PMVEC expressed PAR-3, as shown by both RT-PCR and Western analysis. PAR-1 activating peptides (PAR-APs: SFLLRN-NH(2) and TFLLRN-NH(2)) were used to confirm a role for the PAR-1 receptor. PAR-APs (25-250 muM) also increased TER, formed fewer stress fibers, and did not induce paracellular gaps in PMVEC in contrast to that shown in pulmonary artery endothelial cells. These results were confirmed in isolated perfused rat lung preparations. PAR-APs (100 mug/ml) induced a 60% increase in the filtration coefficient over baseline. However, by transmission electron microscopy, perivascular fluid cuffs were seen only along conduit veins and arteries without evidence of intra-alveolar edema. We conclude that thrombin exerts a segmentally differentiated effect on endothelial barrier function in vitro, which corresponds to a pattern of predominant perivascular fluid cuff formation in situ. This may indicate a distinct role for thrombin in the microcirculation.  相似文献   

11.
Proteinase-activated receptors (PARs) are crucial in orchestrating cellular responses to coagulation proteinases, such as thrombin and FXa. Four PARs have been characterized and have been shown to be differentially expressed in mice and humans and between tissues. We have previously shown that in murine lung fibroblasts, PAR-1 is solely responsible for all cellular responses to thrombin and FXa. In contrast, we report here that in primary human lung fibroblasts (pHLFs), known PARs fail to account for all of the cellular responses to thrombin, in particular in the presence of high, but physiologically achievable concentrations of thrombin. We report that pHLFs secrete CCL2 in a PAR-1-dependent manner at low thrombin concentration (~0.3 nM). At or above 10 nM thrombin, pharmacological antagonism (RWJ-58259) fails to block thrombin-induced CCL2 release; whereas PAR-1 cleavage-blocking monoclonal antibodies (ATAP2 and WEDE15) only partially inhibit thrombin-induced CCL2 secretion. In addition, activation of PAR-3, PAR-4, and transactivation of either PAR-2 or EGFR were ruled out as being responsible for thrombin-mediated CCL2 secretion at high yet standard concentrations of the proteinase. We further provide evidence that PAR-1-dependent and PAR-independent signaling involves the rapid phosphorylation of ERK, which in turn is absolutely required for thrombin-induced CCL2 secretion at both low and standard concentration of the proteinase. Our findings suggest the existence of a PAR-independent signaling mechanism in human lung fibroblasts and have important implications for the design of therapeutic strategies aimed at blocking pro-inflammatory signaling responses associated with excessive thrombin generation.  相似文献   

12.
Protease-activated receptors (PARs), newlyidentified members of G protein-coupled receptors, are widelydistributed in the brain. Thrombin evokes multiple cellular responsesin a large variety of cells by activating PAR-1, -3, and -4. Incultured rat astrocytes we investigated the signaling pathway ofthrombin- and PAR-activating peptide (PAR-AP)-induced cellproliferation. Our results show that PAR activation stimulatesproliferation of astrocytes through the ERK pathway. Thrombinstimulates ERK1/2 phosphorylation in a time- andconcentration-dependent manner. This effect can be fully mimicked by aspecific PAR-1-AP but only to a small degree by PAR-3-AP and PAR-4-AP.PAR-2-AP can induce a moderate ERK1/2 activation as well.Thrombin-stimulated ERK1/2 activation is mainly mediated by PAR-1 viatwo branches: 1) the PTX-sensitive Gprotein/(-subunits)-phosphatidylinositol 3-kinase branch, and2) the Gq-PLC-(InsP3receptor)/Ca2+-PKC pathway. Thrombin- or PAR-1-AP-inducedERK activation is partially blocked by a selective EGF receptorinhibitor, AG1478. Nevertheless, transphosphorylation of EGF receptoris unlikely for ERK1/2 activation and is certainly not involved inPAR-1-induced proliferation. The metalloproteinase mechanism involvingtransactivation of the EGF receptor by released heparin-binding EGF wasexcluded. EGF receptor activation was detected by the receptorautophosphorylation site, tyrosine 1068. Our data suggest thatthrombin-induced mitogenic action in astrocytes occurs independently ofEGF receptor transphosphorylation.

  相似文献   

13.
Proteinase-activated receptor 1 (PAR-1) and cell apoptosis   总被引:5,自引:0,他引:5  
This review summarizes the main aspects and newest findings of how proteinase-activated receptor 1 (PAR-1) may modulate programmed cell death. Activation of PAR-1 has been found to induce or inhibit apoptosis in a variety of cells, depending on the dosage of its physiological agonist thrombin, or that of synthetic receptor activators. To date, cellular targets for PAR-1-mediated effects on apoptosis include neuronal, endothelial, and epithelial cells, fibroblasts, and tumor cells. The signaling pathways involved in the induction or prevention of apoptosis by PAR-1 activation are diverse, and include JAK/STAT, RhoA, myosin light chain kinase, ERK1/2, and various Bcl-2 family members. In view of the well-established involvement of microbial proteinases in host tissue malfunction, the article also elaborates on the possible significance of PAR-1 activation for the pathogenesis of infectious disease.  相似文献   

14.
Liu J  Schuff-Werner P  Steiner M 《FEBS letters》2004,577(1-2):175-180
The efficiency of small interfering RNA (siRNA)-induced gene knockdown is hampered by low transfection efficiency. We established a novel and simple double transfection method using specific siRNA duplexes targeted against human thrombin receptor PAR-1 in DU 145 prostate cancer cells. The initial siRNA transfection of cell suspensions followed by re-transfection of adherent cells on the following day resulted in undetectable PAR-1 mRNA and absent receptor protein. PAR-1 mRNA expression was silenced for up to five days. Functional studies showed that PAR-1 gene silencing in DU 145 cells abolished the modulating effects of thrombin on cell adhesion to the extracellular matrix proteins, fibronectin and laminin, thus demonstrating the essential role of PAR-1 in mediating thrombin effects on DU 145 cell adhesion.  相似文献   

15.
Arosio D  Ayala YM  Di Cera E 《Biochemistry》2000,39(27):8095-8101
W215 is a highly conserved residue that shapes the S3 and S4 specificity sites of thrombin and participates in an edge-to-face interaction with residue F8 of the fibrinogen Aalpha chain. Protein C and the platelet receptor PAR-1 carry an acidic residue at P3 and bind to the active site of thrombin without making contact with W215. This suggested that mutation of W215 could dissociate the cleavage of fibrinogen from that of protein C and PAR-1. Replacement of W215 with Phe produces modest effects on thrombin function, whereas the W215Y replacement compromises significantly the catalytic activity toward all chromogenic and natural substrates that are tested. Replacement of W215 with Ala almost obliterates Na(+) binding, reduces the level of fibrinogen cleavage 500-fold, but decreases the levels of protein C activation and PAR-1 cleavage only 3- and 25-fold, respectively. The W215A mutant cleaves PAR-1 with a specificity constant that is more than 13-fold higher than that of fibrinogen and protein C and is the first thrombin derivative to be described that functions as an almost exclusive activator of PAR-1. The environment of W215 influences differentially three physiologically important interactions of thrombin, which should assist in the study of each of these functions separately in vivo.  相似文献   

16.
The serine protease thrombin has been proposed to be involved in neuromuscular plasticity. Its specific receptor "protease activated receptor-1" (PAR-1), a G protein-coupled receptor, has been shown to be expressed in myoblasts but not after fusion (Suidan et al., 1996 J Biol Chem 271:29162-29169). In the present work we have investigated the expression of PAR-1 during rat skeletal muscle differentiation both in vitro and in vivo. Primary cultures of rat foetal skeletal muscle, characterized by their spontaneous contractile activity, were used for exploration of PAR-1 by RT-PCR, immunocytochemistry and Western blotting. Our results show that PAR-1 mRNA and protein are both present in myoblasts and myotubes. Incubation of myotubes loaded with fluo-3-AM in presence of thrombin (200 nM) or PAR-1 agonist peptide (SFLLRN, 500 microM), induced the intracellular release of calcium indicating the activation of PAR-1. Blockade of contractile activity by tetrodotoxin (TTX, 6 nM) did not modify either PAR-1 synthesis or its cellular localization. Investigation of PAR-1 on rat muscle cryostat sections at Day 18 of embryogenesis and postnatal Days 1, 5, and 10 indicated that this protein is first expressed in the cytoplasm and that it later localizes to the membrane. Moreover, its expression correlates with myosin heavy chain transitions occurring during post-natal period and is restricted to primary fibers. Taken together, these results suggest that PAR-1 expression is not related to contractile activity but to myogenic differentiation.  相似文献   

17.
Induction of IL-6 release from human T cells by PAR-1 and PAR-2 agonists   总被引:4,自引:0,他引:4  
Proteinase-activated receptors (PAR) have been recognized as playing an important role in inflammation and immune response. However, little is known of the expression and function of PAR on human T cells. In this study, the expression of PAR on highly purified human T cells was determined and the secretion of IL-6 from cultured T cells in response to serine proteinases and agonist peptides of PAR was examined. The results showed that T cells express PAR-1, PAR-2 and PAR-3 proteins and genes. Thrombin, trypsin and tryptase, but not elastase, were able to stimulate concentration-dependent secretion of IL-6 from T cells following a 16 h incubation period. The specific inhibitors of thrombin, trypsin and tryptase inhibited the actions of these proteinases on T cells, indicating that the enzymatic activity is essential for their actions. Agonist peptides of PAR SFLLR-NH2, TFLLRN-NH2 and SLIGKV-NH2, but not TFRGAP-NH2, GYPGQV-NH2 and AYPGKF-NH2, are also capable of inducing IL-6 release from T cells. In conclusion, induction of IL-6 secretion from T cells by thrombin, trypsin and tryptase is probably through the activation of PAR, suggesting that serine proteinases are involved in the regulation of immune response of the body.  相似文献   

18.
Protease-activated receptor-2 (PAR-2) may have proinflammatory effects in some tissues and protective effects in other tissues. The role of PAR-2 in in vivo myocardial ischemia-reperfusion has not yet been determined. This study tested the hypothesis that PAR-2 activation with the PAR-2 agonist peptide SLIGRL (PAR-2 AP) reduces myocardial infarct size when given at reperfusion in vivo, and this cardioprotection involves the ERK1/2 pathway. Anesthetized rats were randomly assigned to the following groups with 30 min of regional ischemia and 3 h reperfusion: 1) control with saline; 2) vehicle (DMSO); 3) PAR-2 AP, 1 mg/kg given intravenously 5 min before reperfusion; 4) scrambled peptide (SP), 1 mg/kg; 5) the ERK1/2 inhibitor PD-98059 (PD), 0.3 mg/kg given 10 min before reperfusion; 6) the phosphatidylinositol 3-kinase inhibitor LY-294002 (LY), 0.3 mg/kg given 10 min before reperfusion; 7) PD + PAR-2 AP, 0.3 mg/kg PD given 5 min before PAR-2 AP; 8) LY + PAR-2 AP, 0.3 mg/kg LY given 5 min before PAR-2 AP; 9) chelerythrine (Chel) alone, 5 mg/kg given 10 min before reperfusion; and 10) Chel + PAR-2 AP, Chel was given 5 min before PAR-2 AP (10 min before reperfusion). Activation of ERK1/2, ERK5, Akt, and the downstream targets of ERK1/2 [P90 RSK and bcl-xl/bcl-2-associated death promoter (BAD)] was determined by Western blot analysis in separate experiments. PAR-2 AP significantly reduced infarct size compared with control (36 +/- 2% vs. 53 +/- 1%, P < 0.05), and SP had no effect on infarct size (53 +/- 3%). PAR-2 AP significantly increased phosphorylation of ERK1/2, p90RSK, and BAD but not Akt or ERK5. Accordingly, the infarct-size sparing effect of PAR-2 AP was abolished by PD (PAR-2 AP, 36 +/- 2% vs. PD + PAR-2 AP, 50 +/- 1%; P < 0.05) and by Chel (Chel + PAR-2 AP, 58 +/- 2%) but not by LY (PAR-2 AP, 36 +/- 2% vs. LY + PAR-2 AP, 38 +/- 3%; P > 0.05). Therefore, PAR-2 activation is cardioprotective in the in vivo rat heart ischemia-reperfusion model, and this protection involves the ERK1/2 pathway and PKC.  相似文献   

19.

Background

A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension.

Principal Findings

Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1).

Conclusion

These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.  相似文献   

20.
Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. The function of VASP in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP(-/-) mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP(-/-) mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may be correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号