首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Skeletal muscle fibers generate reactive oxygen species (ROS) at a number of subcellular sites and this generation is increased by contractile activity. Early studies suggested that generation of superoxide as a by-product of mitochondrial oxygen consumption was the major source of muscle ROS generation and that the species produced were inevitably damaging to muscle, but recent data argue against both of these possibilities. Developments in analytical approaches have shown that specific ROS are generated in a controlled manner by skeletal muscle fibers in response to physiological stimuli and play important roles in the physiological adaptations of muscle to contractions. These include optimization of contractile performance and initiation of key adaptive changes in gene expression to the stresses of contractions. These positive benefits of the ROS that are induced by contractile activity contrast starkly with the increasing evidence that ROS-induced degenerative pathways are fundamental to aging processes in skeletal muscle. A fuller understanding of these contrasting roles is recognized to be important in the design of strategies to maintain and optimize skeletal muscle function during exercise and to help prevent the devastating effects of sarcopenia and other muscle-wasting conditions.  相似文献   

2.
Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contraction-induced ROS formation affects fatigue development. Single myofibers were loaded with 5 μM dihydrofluorescein-DA (Hfluor-DA), a fluorescent probe that reacts with ROS and results in the formation of fluorescein (Fluor) to precisely monitor ROS generation within single myofibers in real time using confocal miscroscopy. Three identical periods of maximal tetanic contractions (1 contraction/3 s for 2 min, separated by 60 min of rest) were conducted by each myofiber (n = 6) at 20°C. Ebselen (an antioxidant) was present in the perfusate (10 μM) during the second contractile period. Force was reduced by ~30% during each of the three contraction periods, with no significant difference in fatigue development among the three periods. The Fluor signal, indicative of ROS generation, increased significantly above baseline in both the first (42 ± 14%) and third periods (39 ± 10%), with no significant difference in the increase in fluorescence between the first and third periods. There was no increase of Fluor in the presence of ebselen during the second contractile period. These results demonstrated that, in isolated intact Xenopus myofibers, 1) ROS can be measured in real time during tetanic contractions, 2) contractile activity induced a significant increase above resting levels of ROS production, and 3) ebselen treatment reduced ROS generation to baseline levels but had no effect on myofiber contractility and fatigue development.  相似文献   

3.
Oxidative modification of cellular components may contribute to tissue dysfunction during aging. In skeletal muscle, contractile activity increases the generation of reactive oxygen and nitrogen species (ROS). The question of whether contraction-induced ROS generation is further increased in skeletal muscle of the elderly is important since this influences recommendations on their exercise participation. Three different approaches were used to examine whether aging influences contraction-induced ROS generation. Hind limb muscles of adult and old mice underwent a 15-min period of isometric contractions and we examined ROS generation by isolated skeletal muscle mitochondria, ROS release into the muscle extracellular fluid using microdialysis techniques, and the muscle glutathione and protein thiol contents. Resting skeletal muscle of old mice compared with adult mice showed increased ROS release from isolated mitochondria, but no changes in the extracellular levels of superoxide, nitric oxide, hydrogen peroxide, hydroxyl radical activity or muscle glutathione and protein thiol contents. Skeletal muscle mitochondria isolated from both adult and old mice after contractile activity showed significant increases in hydrogen peroxide release compared with pre-contraction values. Contractions increased extracellular hydroxyl radical activity in adult and old mice, but had no significant effect on extracellular hydrogen peroxide or nitric oxide in either group. In adult mice only, contractile activity increased the skeletal muscle release of superoxide. A similar decrease in muscle glutathione and protein thiol contents was seen in adult and old mice following contractions. Thus, contractile activity increased skeletal muscle ROS generation in both adult and old mice with no evidence for an age-related exacerbation of ROS generation.  相似文献   

4.
5.
Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold (P<0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold (P<0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% (P<0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25-40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (approximately 30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both mitochondrial subfractions. Our data suggest the possibility that chronic contractile activity can exert a protective effect on mitochondrially mediated apoptosis in muscle.  相似文献   

6.
Phospholipase A2 (PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2 (iPLA2) isoform and that iPLA2 modulates both cytosolic oxidant activity and contractile function. Experiments utilized differentiated C2C12 myotubes and a panel of striated muscles isolated from adult mice. Muscle preparations were processed for measurement of mRNA by real-time PCR, protein by immunoblot, cytosolic oxidant activity by the dichlorofluorescein oxidation assay, and contractile function by in vitro testing. We found that iPLA2 was constitutively expressed by all muscles tested (myotubes, diaphragm, soleus, extensor digitorum longus, gastrocnemius, heart) and that mRNA and protein levels were generally similar among muscles. Selective iPLA2 blockade by use of bromoenol lactone (10 microM) decreased cytosolic oxidant activity in myotubes and intact soleus muscle fibers. iPLA2 blockade also inhibited contractile function of unfatigued soleus muscles, shifting the force-frequency relationship rightward and depressing force production during acute fatigue. Each of these changes could be reproduced by selective depletion of superoxide anions using superoxide dismutase (1 kU/ml). These findings suggest that constitutively expressed iPLA2 modulates oxidant activity in skeletal muscle fibers by supporting ROS production, thereby influencing contractile properties and fatigue characteristics.  相似文献   

7.
Reactive oxygen species (ROS) have been linked to oxidation and nuclear efflux of class IIa histone deacetylase 4 (HDAC4) in cardiac muscle. Here we use HDAC-GFP fusion proteins expressed in isolated adult mouse flexor digitorum brevis muscle fibers to study ROS mediation of HDAC localization in skeletal muscle. H(2)O(2) causes nuclear efflux of HDAC4-GFP or HDAC5-GFP, which is blocked by the ROS scavenger N-acetyl-l-cysteine (NAC). Repetitive stimulation with 100-ms trains at 50 Hz, 2/s ("50-Hz trains") increased ROS production and caused HDAC4-GFP or HDAC5-GFP nuclear efflux. During 50-Hz trains, HDAC5-GFP nuclear efflux was completely blocked by NAC, but HDAC4-GFP nuclear efflux was only partially blocked by NAC and partially blocked by the calcium-dependent protein kinase (CaMK) inhibitor KN-62. Thus, during intense activity both ROS and CaMK play roles in nuclear efflux of HDAC4, but only ROS mediates HDAC5 nuclear efflux. The 10-Hz continuous stimulation did not increase the rate of ROS production and did not cause HDAC5-GFP nuclear efflux but promoted HDAC4-GFP nuclear efflux that was sensitive to KN-62 but not NAC and thus mediated by CaMK but not by ROS. Fibers from NOX2 knockout mice lacked ROS production and ROS-dependent nuclear efflux of HDAC5-GFP or HDAC4-GFP during 50-Hz trains but had unmodified Ca(2+) transients. Our results demonstrate that ROS generated by NOX2 could play important roles in muscle remodeling due to intense muscle activity and that the nuclear effluxes of HDAC4 and HDAC5 are differentially regulated by Ca(2+) and ROS during muscle activity.  相似文献   

8.
Diseases that result in muscle weakness, e.g., heart failure, are characterized by elevated sphingomyelinase (SMase) activity. In intact muscle, SMase increases oxidants that contribute to diminished muscle force. However, the source of oxidants, specific processes of muscle contraction that are dysfunctional, and biochemical changes underlying the weakness elicited by SMase remain unknown. We tested three hypotheses: 1) SMase-induced depression of muscle force is mediated by mitochondrial reactive oxygen species (ROS), 2) SMase depresses force and calcium sensitivity of the contractile apparatus, and 3) SMase promotes oxidation and phosphorylation of myofibrillar proteins. Our experiments included intact muscle bundles, permeabilized single fibers, and isolated myofibrillar proteins. The mitochondrial-targeted antioxidant d-Arg-2',6'-dimethyl-Tyr-Lys-Phe-NH(2), decreased cytosolic oxidants and protected intact muscle bundles from weakness stimulated by SMase. SMase depressed maximal calcium-activated force by 20% in permeabilized single fibers (in kN/m(2): control 117 ± 6; SMase 93 ± 8; P < 0.05). Calcium sensitivity of permeabilized single fibers decreased from 5.98 ± 0.03 (control) to 5.91 ± 0.02 (SMase; P < 0.05). Myofibrillar protein nitrotyrosines, carbonyls, and phosphorylation were unaltered by SMase. Our study shows that the fall in specific force of intact muscle elicited by SMase is mediated by mitochondrial ROS and can be attributed largely to dysfunction of the contractile apparatus.  相似文献   

9.
The aim of this work was to examine the intracellular generation of reactive oxygen species in skeletal muscle cells at rest and during and following a period of contractile activity. Intracellular generation of reactive oxygen species was examined directly in skeletal muscle myotubes using 2',7'-dichlorodihydrofluorescein (DCFH) as an intracellular probe. Preliminary experiments confirmed that DCFH located to the myotubes but was readily photoxidizable during repeated intracellular fluorescence measurements and strategies to minimize this were developed. The rate of oxidation of DCFH did not change significantly over 30 min in resting myotubes, but was increased by approximately 4-fold during 10 min of repetitive, electrically stimulated contractile activity. This increased rate was maintained over 10 min following the end of the contraction protocol. DCF fluorescence was distributed evenly throughout the myotube with no evidence of accumulation at any specific intracellular sites or localization to mitochondria. The rise in DCF fluorescence was effectively abolished by treatment of the myotubes with the intracellular superoxide scavenger, Tiron. Thus these data appear to represent the first direct demonstration of a rise in intracellular oxidant activity during contractile activity in skeletal muscle myotubes and indicate that superoxide, generated from intracellular sites, is the ultimate source of oxidant(s) responsible for the DCFH oxidation.  相似文献   

10.
In muscle, aging is associated with a failure of adaptive responses to contractile activity, and this is hypothesized to play an important role in age-related loss of muscle mass and function. Mice lacking the Cu,Zn superoxide dismutase (Cu,ZnSOD, SOD1) show an accelerated, age-related loss of muscle mass and function. This work determined whether adult mice lacking Cu,ZnSOD (Sod1(-/-) mice) show a premature failure of adaptive responses to contractions in a similar manner to old wild-type (WT) mice. Adult Sod1(-/-) mice (6-8 months of age) had a ~30% reduction in gastrocnemius muscle mass compared with age-matched WT mice. This lower muscle mass was associated with an activation of DNA binding by NFκB and AP-1 at rest. Measurements of the activity of reactive oxygen species (ROS) in single fibres from the muscles of Sod1(-/-) mice at rest indicated an elevation in activity compared with fibres from WT mice. Following 15 min of isometric contractions, muscle fibres from WT mice showed an increase in the intracellular ROS activities and activation of NFκB and AP-1, but no changes in either ROS activity or NFκB and AP-1 activation were seen in the muscles of Sod1(-/-) mice following contractions. This pattern of changes mimics that seen in the muscles of old WT mice, suggesting that the attenuated responses to contractile activity seen in old mice result from chronic exposure to increased oxidant activity. Data support the use of the Sod1(-/-) mouse model to evaluate potential mechanisms that contribute to the loss of muscle mass and function in the elderly.  相似文献   

11.
Reactive oxygen and nitrogen species have been implicated in the loss of skeletal muscle mass and function that occurs during aging. Nitric oxide (NO) and superoxide are generated by skeletal muscle and where these are generated in proximity their chemical reaction to form peroxynitrite can compete with the superoxide dismutation to hydrogen peroxide. Changes in NO availability may therefore theoretically modify superoxide and peroxynitrite activities in tissues, but published data are contradictory regarding aging effects on muscle NO availability. We hypothesised that an age-related increase in NO generation might increase peroxynitrite generation in muscles from old mice, leading to an increased nitration of muscle proteins and decreased superoxide availability. This was examined using fluorescent probes and an isolated fiber preparation to examine NO content and superoxide in the cytosol and mitochondria of muscle fibers from adult and old mice both at rest and following contractile activity. We also examined the 3-nitrotyrosine (3-NT) and peroxiredoxin 5 (Prx5) content of muscles from mice as markers of peroxynitrite activity. Data indicate that a substantial age-related increase in NO levels occurred in muscle fibers during contractile activity and this was associated with an increase in muscle eNOS. Muscle proteins from old mice also showed an increased 3-NT content. Inhibition of NOS indicated that NO decreased superoxide bioavailability in muscle mitochondria, although this effect was not age related. Thus increased NO in muscles of old mice was associated with an increased 3-NT content that may potentially contribute to age-related degenerative changes in skeletal muscle.  相似文献   

12.
It is now recognized that respiratory muscle fatigue contributes to the development of respiratory failure in some patients with lung disease. This observation has prompted an examination into the mechanisms of development of muscle fatigue, with the understanding that an elucidation of these processes may lead to new therapeutic approaches to the treatment of these patients. A series of recent studies examining this issue have, moreover, discovered that oxygen-derived free radicals generated during strenuous contraction may modulate respiratory muscle contractile function and contribute to the development of muscle fatigue. The data supporting this concept include: (a) direct (e.g. EPR, ESR studies) and indirect (evidence of lipid peroxidation, protein carbonyl formation, glutathione oxidation) evidence that there is heightened free radical production in contracting muscle, (b) evidence that pharmacologic depletion of muscle antioxidant stores increases degree of muscle fatigue present after a period of exercise, and (c) evidence that administration of agents that act as free radical scavengers retard the development muscle fatigue. Free radicals may produce these changes in muscle force generating capacity by interacting with and altering the function of a number of intracellular-biophysical processes (i.e. sarcolemmal action potential propagation, sarcoplasmic reticulum calcium handling, mitochondrial function, contractile protein interactions).  相似文献   

13.
Increased amounts of reactive oxygen species (ROS) are generated by skeletal muscle during contractile activity, but their intracellular source is unclear. The oxidation of 2',7'-dichlorodihydrofluorescein (DCFH) was examined as an intracellular probe for reactive oxygen species in skeletal muscle myotubes derived from muscles of wild-type mice and mice that were heterozygous knockout for manganese superoxide dismutase (Sod2(+/-)), homozygous knockout for glutathione peroxidase 1 (GPx1(-/-)), or MnSOD transgenic overexpressors (Sod2-Tg). Myoblasts were stimulated to fuse and loaded with DCFH 5-7 days later. Intracellular DCF epifluorescence was measured and myotubes were electrically stimulated to contract for 15 min. Quiescent myotubes with decreased MnSOD or GPx1 showed a significant increase in the rate of DCFH oxidation whereas those with increased MnSOD did not differ from wild type. Following contractions, myotubes from all groups showed an equivalent increase in DCF fluorescence. Thus the oxidation of DCFH in quiescent skeletal muscle myotubes is influenced by the content of enzymes that regulate mitochondrial superoxide and hydrogen peroxide content. In contrast, the increase in DCFH oxidation following contractions was unaffected by reduced or enhanced MnSOD or absent GPx1, indicating that reactive oxygen species produced by contractions were predominantly generated by nonmitochondrial sources.  相似文献   

14.
Over the past decade, reactive oxygen species (ROS) and nitric oxide (NO) derivatives have been established as physiological modulators of skeletal muscle function. This mini-review addresses the roles of these molecules as endogenous regulators of muscle contraction. The article is organized in two parts. First, established concepts are briefly outlined. This section provides an overview of ROS production by muscle, antioxidant buffers that oppose ROS effects, enzymatic synthesis of NO in muscle, the effects of endogenous ROS on contractile function, and NO as a contractile modulator. Second, a selected group of unresolved topics are highlighted. These more controversial issues include putative source(s) of regulatory ROS, the relative importance of the two NO synthase isoforms constitutively coexpressed by muscle fibers, molecular mechanisms of ROS and NO action, and the physiological relevance of redox regulation. By discussing current questions, as well as the established paradigm, this article is intended to further debate and stimulate research in this area.  相似文献   

15.
Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.  相似文献   

16.
17.
Previous studies have reported that oxidizing free radical species are generated during exercise, and there has been considerable interest in the potential effects of these on exercising tissues. We hypothesized that contracting skeletal muscle was a major source of oxidizing free radical species and that untrained skeletal muscle would adapt to the oxidative stress of a single short period of contractile activity by upregulation of the activity of cytoprotective proteins in the absence of overt cellular damage. Fifteen minutes of aerobic contractile activity was found to induce a rapid release of superoxide anions from mouse skeletal muscle in vivo, and studies with contracting cultured skeletal muscle myotubes confirmed that this was due to release from myocytes rather than other cell types present within muscle tissue in vivo. This increased oxidant production caused a rapid, transient reduction in muscle protein thiol content, followed by increases in the activities of superoxide dismutase and catalase and in content of heat shock proteins. These changes occurred in the absence of overt damage to the muscle cells.  相似文献   

18.
During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.  相似文献   

19.
Measurements of deep temperature in muscle are conducted by means of microwave radiothermometer which allow one to separate contributions of different intramuscle processes: that of the contractile system, bloodflow, heat production due to metabolic processes during muscle work. The efficiency coefficient of the contractile system is not less than 33%, bloodflow and metabolism induce equal temperature increase. A mathematical model is proposed to calculate from noninvasive experimental data the blood flow dynamics during and after different muscle loads.  相似文献   

20.
Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z discs and titin protein. Mechanical function of skeletal muscle is defined by the contractile and passive properties of muscle. The contractile properties are used to characterize the amount of force generated during muscle contraction, time of force generation and time of muscle relaxation. Any factor that affects muscle contraction (such as interaction between actin and myosin filaments, homeostasis of calcium, ATP/ADP ratio, etc.) influences the contractile properties. The passive properties refer to the elastic and viscous properties (stiffness and viscosity) of the muscle in the absence of contraction. These properties are determined by the extracellular and the intracellular structural components (such as titin) and connective tissues (mainly collagen) 1-2. The contractile and passive properties are two inseparable aspects of muscle function. For example, elbow flexion is accomplished by contraction of muscles in the anterior compartment of the upper arm and passive stretch of muscles in the posterior compartment of the upper arm. To truly understand muscle function, both contractile and passive properties should be studied.The contractile and/or passive mechanical properties of muscle are often compromised in muscle diseases. A good example is Duchenne muscular dystrophy (DMD), a severe muscle wasting disease caused by dystrophin deficiency 3. Dystrophin is a cytoskeletal protein that stabilizes the muscle cell membrane (sarcolemma) during muscle contraction 4. In the absence of dystrophin, the sarcolemma is damaged by the shearing force generated during force transmission. This membrane tearing initiates a chain reaction which leads to muscle cell death and loss of contractile machinery. As a consequence, muscle force is reduced and dead myofibers are replaced by fibrotic tissues 5. This later change increases muscle stiffness 6. Accurate measurement of these changes provides important guide to evaluate disease progression and to determine therapeutic efficacy of novel gene/cell/pharmacological interventions. Here, we present two methods to evaluate both contractile and passive mechanical properties of the extensor digitorum longus (EDL) muscle and the contractile properties of the tibialis anterior (TA) muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号