共查询到20条相似文献,搜索用时 15 毫秒
1.
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria. 相似文献
2.
Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric centromere-binding protein, ω2, bound parS DNA to form a short-lived partition complex 1 (PC1). The interaction of PC1 with homodimeric δ [δ2 even in the apo form (Apo-δ2)], significantly stimulated the formation of a long-lived ω2·parS complex (PC2) without spreading into neighbouring DNA sequences. In the ATP·Mg2+ bound form, δ2 bound DNA, without sequence specificity, to form a transient dynamic complex (DC). Second, parS bound ω2 interacted with and promoted δ2 redistribution to co-localize with the PC2, leading to transient segrosome complex (SC, parS·ω2·δ2) formation. Third, δ2, in the SC, interacted with a second SC and promoted formation of a bridging complex (BC). Finally, increasing ω2 concentrations stimulated the ATPase activity of δ2 and the BC was disassembled. We propose that PC, DC, SC and BC formation were dynamic processes and that the molar ω2:δ2 ratio and parS DNA control their temporal and spatial assembly during partition of pSM19035 before cell division. 相似文献
3.
Over the last half century, major theoretical and experimental advances have been made in understanding the molecular architecture (e.g., sarcomeric organization) and biophysics (e.g., excitation-contraction coupling) of striated muscle. Studies of how the contractile apparatus is assembled have a shorter history, but our understanding has deepened considerably over the last decade. This review focuses on spontaneous intracellular calcium (Ca2+) signals and their role in skeletal muscle myofibrillogenesis. In embryonic skeletal muscle, several classes of spontaneous Ca2+ signal occur both in vivo and in culture, and blocking their production prevents de novo sarcomere assembly. This review includes a brief overview of myofibrillogenesis, discussion of spontaneous Ca2+ signals produced in embryonic skeletal muscle, the Xenopus model system, the role of Ca2+ signals in regulating assembly of the three major filament systems (actin, titin, and myosin), integration of physiological and biochemical approaches to the problem, and the clinical relevance of basic research in this area. Interspersed throughout are suggestions for future directions and citations for reviews in closely related areas not covered herein. 相似文献
4.
5.
Transition metals function as cofactors in specific proteins, catalyzing electron exchange reactions, binding substrates and stabilizing protein structure. Studies of human diseases and of model organisms have defined many of the molecular details of metal uptake, trafficking, and excretion. The current challenge is to integrate these details into a systematic view of metal content, speciation, localization and use within organisms and ecosystems. 相似文献
6.
7.
8.
Pfanner N Wiedemann N Meisinger C Lithgow T 《Nature structural & molecular biology》2004,11(11):1044-1048
The general preprotein translocase of the outer mitochondrial membrane (TOM complex) transports virtually all mitochondrial precursor proteins, but cannot assemble outer-membrane precursors into functional complexes. A recently discovered sorting and assembly machinery (SAM complex) is essential for integration and assembly of outer-membrane proteins, revealing unexpected connections to mitochondrial evolution and morphology. 相似文献
9.
The plasmid partition process is essential for plasmid propagation and is mediated by par systems, consisting of centromere-like sites and two proteins, ParA and ParB. In the first step of partition by the archetypical P1 system, ParB binds a complicated centromere-like site to form a large nucleoprotein segrosome. ParB is a dimeric DNA-binding protein that can bridge between both A-boxes and B-boxes located on the centromere. Its helix-turn-helix domains bind A-boxes and the dimer domain binds B-boxes. Binding of the first ParB dimer nucleates the remaining ParB molecules onto the centromere site, which somehow leads to the formation of a condensed segrosome superstructure. To further understand this unique DNA spreading capability of ParB, we crystallized and determined the structure of a 1:2 ParB-(142-333):A3-B2-box complex to 3.35A resolution. The structure reveals a remarkable four-way, protein-DNA bridged complex in which both ParB helix-turn-helix domains simultaneously bind adjacent A-boxes and the dimer domain bridges between two B-boxes. The multibridging capability and the novel dimer domain-B-box interaction, which juxtaposes the DNA sites close in space, suggests a mechanism for the formation of the wrapped solenoid-like segrosome superstructure. This multibridging capability of ParB is likely critical in its partition complex formation and pairing functions. 相似文献
10.
11.
Monika Piro Tomasz Maecki Magda Portas Izabela Magierowska Damian Trojanowski David Sherratt Jolanta Zakrzewska‐Czerwiska Katarzyna Ginda Dagmara Jakimowicz 《Molecular microbiology》2019,111(1):204-220
Although mycobacteria are rod shaped and divide by simple binary fission, their cell cycle exhibits unusual features: unequal cell division producing daughter cells that elongate with different velocities, as well as asymmetric chromosome segregation and positioning throughout the cell cycle. As in other bacteria, mycobacterial chromosomes are segregated by pair of proteins, ParA and ParB. ParA is an ATPase that interacts with nucleoprotein ParB complexes – segrosomes and non‐specifically binds the nucleoid. Uniquely in mycobacteria, ParA interacts with a polar protein DivIVA (Wag31), responsible for asymmetric cell elongation, however the biological role of this interaction remained unknown. We hypothesised that this interaction plays a critical role in coordinating chromosome segregation with cell elongation. Using a set of ParA mutants, we determined that disruption of ParA‐DNA binding enhanced the interaction between ParA and DivIVA, indicating a competition between the nucleoid and DivIVA for ParA binding. Having identified the ParA mutation that disrupts its recruitment to DivIVA, we found that it led to inefficient segrosomes separation and increased the cell elongation rate. Our results suggest that ParA modulates DivIVA activity. Thus, we demonstrate that the ParA‐DivIVA interaction facilitates chromosome segregation and modulates cell elongation. 相似文献
13.
14.
15.
16.
17.
18.
Adi Kozminsky-Atias Adi Bar-Shalom Dan Mishmar Noam Zilberberg 《BMC evolutionary biology》2008,8(1):333
Background
For survival, scorpions depend on a wide array of short neurotoxic polypeptides. The venoms of scorpions from the most studied group, the Buthida, are a rich source of small, 23–78 amino acid-long peptides, well packed by either three or four disulfide bridges that affect ion channel function in excitable and non-excitable cells. 相似文献19.
Assembly of interferon-β enhanceosome from its individual protein components and of enhancer DNA has been studied in solution using a combination of fluorescence anisotropy, microcalorimetry, and CD titration. It was shown that the enhancer binds only one full-length phosphomimetic IRF-3 dimer at the PRDIII-PRDI sites, and this binding does not exhibit cooperativity with binding of the ATF-2/c-Jun bZIP (leucine zipper dimer with basic DNA recognition segments) heterodimer at the PRDIV site. The orientation of the bZIP pair is, therefore, not determined by the presence of the IRF-3 dimer, but is predetermined by the asymmetry of the PRDIV site. In contrast, bound IRF-3 dimer interacts strongly with the NF-κB (p50/p65) heterodimer bound at the neighboring PRDII site. The orientation of bound NF-κB is also predetermined by the asymmetry of the PRDII site and is the opposite of that found in the crystal structure. The HMG-I/Y protein, proposed as orchestrating enhanceosome assembly, interacts specifically with the PRDII site of the interferon-β enhancer by inserting its DNA-binding segments (AT hooks) into the minor groove, resulting in a significant increase in NF-κB binding affinity for the major groove of this site. 相似文献
20.
The centromere is a key region for cell division where the kinetochore assembles, recognizes and attaches to microtubules so that each sister chromatid can segregate to each daughter cell. The centromeric chromatin is a unique rigid chromatin state promoted by the presence of the histone H3 variant CENP-A, in which epigenetic histone modifications of both heterochromatin or euchromatin states and associated protein elements are present. Although DNA sequence is not regarded as important for the establishment of centromere chromatin, it has become clear that this structure is formed as a result of a highly regulated epigenetic event that leads to the recruitment and stability of kinetochore proteins. We describe an integrative model for epigenetic processes that conform regional chromatin interactions indispensable for the recruitment and stability of kinetochore proteins. If alterations of these chromatin regions occur, chromosomal instability is promoted, although segregation may still take place. 相似文献