首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J E Larsen  K Gerdes  J Light  S Molin 《Gene》1984,28(1):45-54
By insertion of a DNA fragment, containing the phage lambda pR promoter and the pM-promoted cI857 allele of the lambda repressor gene, in plasmid R1 upstream of the replication control genes, cloning vectors have been constructed which are present in one copy per chromosome at temperatures below 37 degrees C, and which display uncontrolled replication at 42 degrees C. Derivatives have been made which carry the R1 par region, stabilizing the plasmid at low temperature when grown in the absence of selection pressure. Cells harbouring these plasmids stop growing after 1-2 h incubation at 42 degrees C, and at this time 50% of the total DNA in the cells is plasmid DNA corresponding to more than 1000 plasmid molecules per cell. Concomitant with plasmid amplification at the high temperature, synthesis of plasmid-coded gene products is amplified, and these vectors can therefore be utilized for obtaining greatly enhanced yields of gene products that may be detrimental to the host cell when present in large amounts.  相似文献   

2.
Cell lysis of Gram-negative bacteria can be efficiently achieved by expression of the cloned lysis gene E of bacteriophage PhiX174. Gene E expression is tightly controlled by the rightward lambda pR promoter and the temperature-sensitive repressor cI857 on lysis plasmid pAW12. The resulting empty bacterial cell envelopes, called bacterial ghosts, are currently under investigation as candidate vaccines. Expression of gene E is stringently repressed at temperatures up to 30 degrees C, whereas gene E expression, and thus cell lysis, is induced at temperatures higher than 30 degrees C due to thermal inactivation of the cI857 repressor. As a consequence, the production of ghosts requires that bacteria have to be grown at 28 degrees C before the lysis process is induced. In order to reflect the growth temperature of pathogenic bacteria in vivo, it seemed favorable to extend the heat stability of the lambda pR promoter/cI857 repressor system, allowing pathogens to grow at 37 degrees C before induction of lysis. In this study we describe a mutation in the lambda pR promoter, which allows stringent repression of gene E expression at temperatures up to 36 degrees C, but still permits induction of cell lysis at 42 degrees C.  相似文献   

3.
Heat-inducible autolytic vector for high-throughput screening   总被引:1,自引:0,他引:1  
Xu L  Li S  Ren C  Cai Z  Lin Z 《BioTechniques》2006,41(3):319-323
In directed evolution, a high-throughput screening system is often a prerequisite for sampling the enzyme variants. When the target enzyme is expressed intracellularly, for example when Escherichia coli is used as the host, chemical or enzymatic disruption of cell membrane is often required in many cases, which can be tedious, time-consuming, and costly. In this study, a set of heat-inducible autolytic vectors were constructed to solve this problem, in which the SRRz lysis gene cassette from bacteriophage lambda was placed downstream of heat-inducible promoters, lambda cI857/pR promoter and its mutant, c1857/pR(M). The artificial autolytic units were inserted into the backbone of pUC18 (away from the multiple cloning sites). For the wild promoter; cI857/pR, the SRRz lysis cassette was expressed by temperature up-shift from 28 degrees to 38 degrees C, and the lysis efficiency of transformed bacterial cells was found to be consistent and could reach 96.3% as measured by the reporter beta3-galactosidase assay. In order to obtain a higher cell growth rate, the mutant promoter cI857/pR(M) was utilized to allow bacteria growth at 35 degrees C and lysis at 42 degrees C. However; this heat-inducible system showed significant inconsistency in terms of lysis efficiency. Bacillus subtilis 168 lipase A gene was further inserted into the multiple cloning sites of the autolytic vector containing cI857/pR, and 93.7% of the expressed lipase activity was found in the culture medium upon heat induction, demonstrating the utility of the vector for expression and rapid extracellular assay of heterologous enzymes.  相似文献   

4.
5.
6.
Plasmid constructs pNW1 through pNW6 containing a controllable xylE gene (for catechol 2,3-dioxygenase) were introduced into Streptomyces lividans strains to provide a selectable marker system. xylE functions in S. lividans under the control of bacteriophage lambda promoters lambda pL and lambda pR. Thermoregulated expression of xylE is provided through the lambda repressor cI857. Catechol 2,3-dioxygenase activity was increased 2.8-fold from plasmid construct pNW2 (lambda pL, xylE, cI857) and 9.5- and 7.4-fold from constructs pNW3 (lambda pR, xylE, cI857) and pNW5 (lambda pR, xylE, cI857), respectively, when the temperature was shifted from 28 degrees C to 37 degrees C. The stability of the constructs varied from 4.7% for pNW2 to 99.4% for pNW4 (lambda pL, xylE) over two rounds of sporulation. Marked S. lividans strains released into soil systems retained the XylE phenotype for more than 80 days, depending on the marker plasmid, when examined by a selective plating method. Furthermore, S. lividans harboring plasmid pNW5 was detectable by nucleic acid hybridization at less than 10 CFU g-1 (dry weight) of soil as mycelium and 10(3) CFU g-1 (dry weight) of soil as spores with the xylE marker DNA extracted from soil and amplified by using the polymerase chain reaction.  相似文献   

7.
Plasmid constructs pNW1 through pNW6 containing a controllable xylE gene (for catechol 2,3-dioxygenase) were introduced into Streptomyces lividans strains to provide a selectable marker system. xylE functions in S. lividans under the control of bacteriophage lambda promoters lambda pL and lambda pR. Thermoregulated expression of xylE is provided through the lambda repressor cI857. Catechol 2,3-dioxygenase activity was increased 2.8-fold from plasmid construct pNW2 (lambda pL, xylE, cI857) and 9.5- and 7.4-fold from constructs pNW3 (lambda pR, xylE, cI857) and pNW5 (lambda pR, xylE, cI857), respectively, when the temperature was shifted from 28 degrees C to 37 degrees C. The stability of the constructs varied from 4.7% for pNW2 to 99.4% for pNW4 (lambda pL, xylE) over two rounds of sporulation. Marked S. lividans strains released into soil systems retained the XylE phenotype for more than 80 days, depending on the marker plasmid, when examined by a selective plating method. Furthermore, S. lividans harboring plasmid pNW5 was detectable by nucleic acid hybridization at less than 10 CFU g-1 (dry weight) of soil as mycelium and 10(3) CFU g-1 (dry weight) of soil as spores with the xylE marker DNA extracted from soil and amplified by using the polymerase chain reaction.  相似文献   

8.
The expression at different temperatures of the lacZ gene, which is controlled by the lambda pL and pR tandem promoters and the cI857 temperature-sensitive repressor, was studied in Escherichia coli continuous cultures. At temperatures between 30 and 42 degrees C, beta-galactosidase activity behaved according to an exponential equation. By inducing a culture at a temperature within this range, predefined, nearly constant submaximal levels of gene expression and recombinant product yield can be obtained.  相似文献   

9.
10.
A set of plasmid cloning vectors has been constructed, allowing the integration of any DNA fragment into the bacteriophage lambda attachment site attB of the Escherichia coli chromosome. The system is based upon two components: (i) a number of cloning vectors containing the lambda attachment site attP and (ii) a helper plasmid, bearing the lambda int gene, transcribed from the lambda PR promoter under the control of the temperature-sensitive repressor cI857. The DNA fragment of interest is cloned into the multicloning site of one of the attP-harboring plasmids. Subsequently, the origin of the plasmid, located on a cloning cassette, is cut out and the DNA becomes newly ligated, resulting in a circular DNA molecule without replication ability. The strain of choice, containing the int gene carrying helper plasmid, is transformed with this DNA molecule and incubated at 42 degrees C to induce int gene expression. Additionally, the temperature shift leads to the loss of the helper plasmid after a few cell generations, because the replication ability of its replicon is blocked at 42 degrees C. These vectors have been successfully used for integration of several promoter-lacZ fusions into the chromosome. The ratio between integration due to homologous recombination and Int protein-mediated integration has been determined.  相似文献   

11.
The promoter-probing vector (pSK plasmid) was explored for cloning of the fragments from lambda cI857 and lambda b2 DNAs containing different regions of the att site. We have constructed all-tet fusions where the fusions are: 1) HindIII/BamHI-491 base pairs (b. p.) fragment of lambda cI857 DNA containing POP' site (plasmid pSK-PP'); 2) AluI-242 b. p. fragment of lambda cI857 DNA containing the left arm of the POP' site (plasmid pSK-P); 3) AluI-242 b. p. fragment of lambda cI857 DNA with opposite orientation (plasmid pSK-P); 4) EcoRI/BamHI-750 b. p. fragment of lambda b2 DNA containing the right arm of the POP' site (plasmid pSK-P'). These fusions permit us to analyse the effect of various pieces of the attachment site on the expression tet gene as the result of reparation of this gene promoter. We find that expression of tet (tetracycline resistant phenotype) takes place in the pSK-PP' and pSK-P but not in the pSK-P' and pSK-P. These facts permit us to conclude that the left arm of the att site contains a rightward promoter functioning in vivo. We postulate that this promoter activity might correspond to the promoter patt, which was described in previous experiments in vitro.  相似文献   

12.
A plasmid cloning vehicle allowing a positive selection for inserted fragments   总被引:29,自引:0,他引:29  
  相似文献   

13.
14.
15.
A 'phase-shift' translation fusion vector was constructed in which mutually compatible restriction sites BamHI, BclI and BglII are positioned in such a manner that the cut point is in a different reading frame, immediately following the ATG start codon and ribosome-binding site of the lambda cro gene. The lambda cro gene is expressed from promoter pR and controlled by a thermosensitive (cI857) lambda repressor. The usefulness of the expression vector was demonstrated using a galK gene lacking the ATG start codon and fusing this to the pR promoter and ATG start codon of the lambda cro gene, resulting in cI857-regulated expression of galactokinase. The vector is of general use for foreign gene expression in Escherichia coli when the target gene has a compatible cohesive end (5'-GATC-3') at the N terminus (provided, for example, by a BamHI linker). The lambda cI857-pR-cro-galK cassette was cloned into pJRD215, a wide-host-range plasmid and transferred by conjugation to a variety of Gram-negative bacteria. In all cases, thermosensitive regulation of galactokinase could be demonstrated, though the levels of induction varied considerably. These results show that the powerful lambda pR promoter and the efficient lambda repressor can be used to regulate expression of foreign genes in Gram-negative organisms other than E. coli.  相似文献   

16.
17.
18.
The effects of plasmid promoter strength and origin of replication on cloned gene expression in recombinant Saccharomyces cerevisiae have been studied in batch and continuous culture. The plasmids employed contain the Escherichia coli lacZ gene under the control of yeast promoters regulated by the galactose regulatory circuit. The synthesis of beta-galactosidase was therefore induced by the addition of galactose. The initial induction transients in batch culture were compared for strains containing plasmids with 2mu and ARS1 origins. As expected, cloned gene product synthesis was much lower with the ARS1 plasmid: average beta-galactosidase specific activity was an order of magnitude below that with the 2mu-based plasmid. This was primarily due to the low plasmid stability of 7.5% when the plasmid origin of replication was the ARS1 element. The influence of plasmid promoter strength was studied using the yeast GAL1, GAL10, and hybrid GAL10-CYC1 promoters. The rate of increase in beta-galactosidase specific activity after induction in batch culture was 3-5 times higher with the GAL1 promoter. Growth rate under induced conditions, however, was 15% lower than in the absence of lacZ expression for this promoter system. The influence of plasmid promoter strength on induction behavior and cloned gene expression was also studied in continuous fermentations. Higher beta-galactosidase production and lower biomass concentration and plasmid stability were observed for the strain bearing the plasmid with the stronger GAL1 promoter. Despite the decrease in biomass concentration and plasmid stability, overall productivity in continuous culture using the GAL1 promoter was three times that obtained with the GAL10-CYC1 promoter.  相似文献   

19.
The Escherichia coli gene for folylpolyglutamate synthetase-dihydrofolate synthetase was localized to plasmids pLC22-45, 24-31, and 28-44 of the Clarke-Carbon E. coli colony bank (Clarke, L., and Carbon, J. (1976) Cell 9, 91-99) by screening the bank by replica mating with an E. coli folC mutant. The folC gene was subcloned from pLC22-45 and inserted into a high copy number plasmid containing the lambda replication control region under the control of the temperature-sensitive cI857 repressor and into a high expression plasmid containing the lambda PL promoter and the cI857 repressor. The folC structural gene was located on a 1.52-kilobase PvuI fragment, sufficient to code for a protein of maximum Mr 55,000. E. coli transformants containing the recombinant plasmids, when induced by culturing at 42 degrees C, had folylpolyglutamate synthetase and dihydrofolate synthetase levels that were 100- to 400-fold higher than in wild type strains and which represented up to 4% of the soluble cell protein. The E. coli folylpolyglutamate synthetase-dihydrofolate synthetase has been purified to homogeneity from the transformants. Both activities are catalyzed by a single protein of Mr 47,000. Some kinetic properties of the enzymes and a new spectrophotometric method for assaying dihydrofolate synthetase activity are described.  相似文献   

20.
A xylanase encoded by the xynA gene of the extreme thermophile "Caldocellum saccharolyticum" was overexpressed in Escherichia coli by cloning the gene downstream from the temperature-inducible lambda pR and pL promoters of the expression vector pJLA602. Induction of up to 55 times was obtained by growing the cells at 42 degrees C, and the xylanase made up to 20% of the whole-cell protein content. The enzyme was located in the cytoplasmic fraction in E. coli. The temperature and pH optima were determined to be 70 degrees C and pH 5.5 to 6, respectively. The xylanase was stable for at least 72 h if incubated at 60 degrees C, with half-lives of 8 to 9 h at 70 degrees C and 2 to 3 min at 80 degrees C. The enzyme had high activity on xylan and ortho-nitrophenyl beta-D-xylopyranoside and some activity on carboxymethyl cellulose and para-nitrophenyl beta-D-cellobioside. The gene was probably expressed from its own promoter in E. coli. Translation of the xylanase overproduced in E. coli seemed to initiate at a GTG codon and not at an ATG codon as previously determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号