首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above ?15°C, whereas membrane phase changes may continue until temperatures as low as ?30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to ?10°C was found to be greater than that below ?10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min-1, ~5% of the initial osmotically active water volume is trapped inside the cells at ?30°C.  相似文献   

2.
Several reactions of the cytochrome P450 multi-step cycle have been studied by fast light activation combined with subzero temperatures. A flash device was adapted to an Aminco-Chance DW 2 spectrophotometer equipped for subzero temperature thermostatisation. The first electron can be introduced into the cycle by non specific reducing agents such as reduced flavin mononucleotide (FMNH2) or methylviologen radical (MV.). This first reduction remains a fast process even at subzero temperatures. The oxy-compound Fe2+-O2 can thus be formed either directly from Fe2+ or via the photodissociation of the carboxy-ferro adduct. Fe2+-O2 is stable at subzero temperatures towards spontaneous autoxidation as well as further reduction by FMNH2 or MW.. In addition, the recombination of CO after flash photodissociation of Fe2+-CO was used to study in more details the specific behaviors of the purified microsomal cytochrome.  相似文献   

3.
The effect of supercooled storage (at subzero temperatures without ice formation) on compacted mouse morulae and early blastocysts was studied. The embryos were equilibrated with one of three storage solutions containing 1, 3, or 6% each of methanol and glycerol and cooled to -2, -5, -10, or -15 degrees C and stored for up to 24 h to assess the effect of subzero storage at different temperatures and concentrations of the permeating cryoprotectants on embryo survival. Early blastocysts showed substantially greater survival than morulae and, in general, survival of embryos of either stage increased with the concentration of cryoprotectant, while the proportion of embryos surviving decreased with decreasing storage temperature and with increased duration of storage.  相似文献   

4.
Renal cortical slices were frozen to various subzero temperatures after treatment with 2.1 M of one of three cryoprotectants, dimethyl sulfoxide (Me2SO), ethylene glycol, or glycerol. The effects on tissue [K+]/[Na+] of cooling to these temperatures were tested (using identical procedure times, cooling rates, and warming rates) by holding the slices at each experimental temperature for appropriate periods of time prior to rewarming. The effects of the holding time were assessed by comparison with slices which were cooled and rewarmed with no intermediate holding time. Slices treated with ethylene glycol or glycerol were found to exhibit a continuous decrease in [K+]/[Na+] with lowered temperatures, in contrast to those treated with Me2SO. Slices treated with Me2SO actually experienced a continuous increase in [K+]/[Na+] with lowered temperature (-12 to -33 degrees C). Me2SO does exhibit toxic effects at subzero temperatures. Adverse effects of holding time on viability are seen for Me2SO-treated slices at higher subzero temperatures. These effects were alleviated as the temperature is reduced, suggesting that temperature has a greater effect on survival of renal cortical tissue than Me2SO concentration. However, the toxicity observed at higher subzero temperatures is expected to be of importance, particularly for slowly cooled tissues which are exposed to these temperatures for relatively long periods of time.  相似文献   

5.
On the mechanism of injury to slowly frozen erythrocytes.   总被引:4,自引:1,他引:3       下载免费PDF全文
When cells are frozen slowly in aqueous suspensions, the solutes in the suspending solution concentrate as the amount of ice increases; the cells undergo osmotic dehydration and are sequestered in ever-narrowing liquid-filled channels. Cryoprotective solutes, such as glycerol, reduce the amount of ice that forms at any specified subzero temperature, thereby controlling the buildup in concentration of those other solutes present, as well as increasing the volume of the channels that remain to accommodate the cells. It has generally been thought that freezing injury is mediated by the increase in electrolyte concentration in the milieu surrounding the cells, rather than reduction of temperature or any direct action of ice. In this study we have frozen human erythrocytes in isotonic solutions of sodium chloride and glycerol and have demonstrated a correlation between the extent of damage at specific subzero temperatures, and that caused by the action at 0 degrees C of solutions having the same composition as those produced by freezing. The cell lysis observed increased directly with glycerol concentration, both in the freezing experiments and when the cells were exposed to corresponding solutions at 0 degrees C, showing that the concentration of sodium chloride alone is not sufficient to account quantitatively for the damage observed. We then studied the effect of freezing in anisotonic solutions to break the fixed relationship between solute concentration and the volume of the unfrozen fraction, as described by Mazur, P., W. F. Rall, and N. Rigopoulos (1981. Biophys. J. 653-675). We confirmed their experimental findings, but we explain them differently. We ascribe the apparently dominant effect of the unfrozen fraction to the fact that the cells were frozen in, and returned to, anisotonic solutions in which their volume was either less than, or greater than, their physiological volume. When similar cell suspensions were subjected to a similar cycle of increase and then decrease in solution strength, but in the absence of ice (at 20 degrees C), a similar pattern of hemolysis was observed. We conclude that freezing injury to human erythrocytes is due solely to changes that occur in the composition of their surrounding milieu, and is most probably mediated by a temporary leak in the plasma membrane that occurs during the thawing (reexpansion) phase.  相似文献   

6.
The long-term preservation of whole organs will almost certainly require the use of subzero temperatures and cryoprotectants. An essential part of such a technique is the ability to add a cryoprotectant in adequate concentration and subsequently to remove it without damage to the organ. In this study rabbit kidneys have been perfused with solutions containing 3% dextran and 2 m glycerol at 5 °C, and their function has been measured after removal of the glycerol. The assay technique involved the measurement of glomerular filtration rate, protein leakage, and tubular reabsorption of sodium and glucose. The results indicate that the inclusion in the perfusate of an impermeant solute (mannitol) and limitation of the rate of change of glycerol concentration (to 30 mm min?1) permits rabbit kidneys to retain a degree of function similar to that found in perfused control kidneys, although somewhat reduced in comparison with freshly isolated kidneys.  相似文献   

7.
Larvae of the goldenrod gall moth, Epiblema scudderiana, use the freeze avoidance strategy of winter cold hardiness and show multiple metabolic adaptations for subzero survival including accumulation of large amounts of glycerol as a colligative antifreeze. Induction and regulation of cold hardiness adaptations requires the intermediary action of signal transduction enzymes. Changes in the activities of several signaling enzymes including cAMP-dependent protein kinase (PKA), protein phosphatases 1 (PP1), 2A, 2C, and protein tyrosine phosphatases (PTPs) were monitored over the winter and during experimental exposures of larvae to subzero temperatures (-4 degrees C, a temperature that triggers rapid glycerol synthesis, or -20 degrees C, a common midwinter ambient temperature) or anoxia. A strong increase in the amount of active PP1 in the latter part of the winter may be responsible for shutting off glycogenolysis once glycerol levels are maximized. There appears to be a limited role for PKA in overwintering but PP2A and PP2C activities rose when larvae were exposed to -20 degrees C and PTP activities rose significantly over the winter months and also in response to laboratory subzero (-20 degrees C) and anoxia exposures. The strong responses by PTPs suggest that these may be involved in cell cycle and growth arrest during winter diapause.  相似文献   

8.
We investigated physiological responses to supercooling in hatchling painted turtles (Chrysemys picta) which remain in their natal nests over winter and therefore may become exposed to subzero temperatures. These turtles are freeze tolerant but also must rely on supercooling to survive exposure to the lower temperatures occurring in nests during winter. We compared whole-body concentrations of lactate, glucose, glycerol, and ATP in turtles chilled at 0 degrees C, -4 degrees C, or -6 degrees C for 5 days, or at 6 degrees C for 19 days. In a companion experiment, we measured metabolite concentrations in turtles exposed to a hypoxic environment for 1 day, 4 days, or 8 days. Supercooling and hypoxia exposure were both associated with an increase in concentrations of lactate and glucose and a decrease in glycerol concentrations (albeit no change in the ATP pool), suggesting that supercooling induces functional hypoxia. We conclude that hypoxia tolerance may be an important pre-adaptation for surviving exposure to subzero temperatures in hatchling C. picta.  相似文献   

9.
Cellular membranes are one of the primary sites of injury during freezing and thawing for cryopreservation of cells. Fourier transform infrared spectroscopy (FTIR) was used to monitor membrane phase behavior and ice formation during freezing of stallion sperm. At high subzero ice nucleation temperatures which result in cellular dehydration, membranes undergo a profound transition to a highly ordered gel phase. By contrast, low subzero nucleation temperatures, that are likely to result in intracellular ice formation, leave membrane lipids in a relatively hydrated fluid state. The extent of freezing-induced membrane dehydration was found to be dependent on the ice nucleation temperature, and showed Arrhenius behavior. The presence of glycerol did not prevent the freezing-induced membrane phase transition, but membrane dehydration occurred more gradual and over a wider temperature range. We describe a method to determine membrane hydraulic permeability parameters (ELp, Lpg) at subzero temperatures from membrane phase behavior data. In order to do this, it was assumed that the measured freezing-induced shift in wavenumber position of the symmetric CH2 stretching band arising from the lipid acyl chains is proportional to cellular dehydration. Membrane permeability parameters were also determined by analyzing the H2O-bending and -libration combination band, which yielded higher values for both ELp and Lpg as compared to lipid band analysis. These differences likely reflect differences between transport of free and membrane-bound water. FTIR allows for direct assessment of membrane properties at subzero temperatures in intact cells. The derived biophysical membrane parameters are dependent on intrinsic cell properties as well as freezing extender composition.  相似文献   

10.
Insect antifreezes and ice-nucleating agents   总被引:2,自引:0,他引:2  
John G. Duman 《Cryobiology》1982,19(6):613-627
Cold-tolerant, freeze-susceptible insects (those which die if frozen) survive subzero temperatures by proliferating antifreeze solutes which lower the freezing and supercooling points of their body fluids. These antifreezes are of two basic types. Lowmolecular-weight polyhydroxy alcohols and sugars depress the freezing point of water on a colligative basis, although at higher concentrations these solutes may deviate from linearity. Recent studies have shown that these solutes lower the supercooling point of aqueous solutions approximately two times more than they depress the freezing point. Consequently, if a freeze-susceptible insect accumulates sufficient glycerol to lower the freezing point by 5 °C, then the glycerol should depress the insect's supercooling point by 10 °C.Some cold-tolerant, freeze-susceptible insects produce proteins which produce a thermal hysteresis (a difference between the freezing and melting point) of several degrees in the body fluids. These thermal hysteresis proteins (THPs) are similar to the antifreeze proteins and glycoproteins of polar marine teleost fishes. The THPs lower the freezing, and presumably the supercooling, point by a noncolligative mechanism. Consequently, the insect can build up these antifreezes, and thereby gain protection from freezing, without the disruptive increases in osmotic pressure which accompany the accumulation of polyols or sugars. Therefore the THPs can be more easily accumulated and maintained during warm periods in anticipation of subzero temperatures. It is not surprising then that photoperiod, as well as temperature, is a critical environmental cue in the control of THP levels in insects.Some species of freeze-tolerant insects also produce THPs. This appears somewhat odd, since most freeze-tolerant insects produce ice nucleators which function to inhibit supercooling and it is therefore not clear why such an insect would produce antifreeze proteins. It is possible that the THPs have an alternate function in these species. However, it also appears that the THPs function as antifreezes during those periods of the year when these insects are not freeze tolerant (i.e., early autumn and spring) but when subzero temperatures could occur. In addition, at least one freeze-tolerant insect which produces THPs, Dendroides canadensis, typically loses freeze tolerance during midwinter thaws and then regains tolerance. The THPs could be important during those periods when Dendroides loses freeze tolerance by making the insect less susceptible to sudden temperature decreases.Comparatively little is known of the biochemistry of insect THPs. However, comparisons of those few insect THPs which have been purified with the THPs of fishes show some interesting differences. The insect THPs lack the large alanine component commonly found in the fish THPs. In addition, the insect THPs generally contain greater percentages of hydrophilic amino acids than do those of the fish. Perhaps the most interesting insect THPs are those from Tenebrio molitor which have an extremely large cysteine component (28% in one THP). Studies on the primary and higher-order structure of the insect THPs need to be carried out so that more critical comparisons with the fish THPs can be made. This may provide important insights into the mechanisms of freezing point and supercooling point depression exhibited by these molecules. In addition, comparative studies of the freezing and supercooling point depressing activities of the various THPs, in relation to their structures, should prove most interesting.It has become increasingly apparent over the last few years that most freeze-tolerant insects, unlike freeze-susceptible species, inhibit supercooling by accumulating ice-nucleating agents in their hemolymph. These nucleators function to ensure that ice formation occurs in the extracellular fluid at fairly high temperatures, thereby minimizing the possibility of formation of lethal intracellular ice. Little is known of the nature of the insect ice-nucleating agents. Those few which have been studied are heat sensitive and nondialyzable and are inactivated by proteolytic enzymes, thus indicating that they are proteinaceous. Studies on the structure-function relationships of these unique molecules should be done.  相似文献   

11.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,54(2):223-233
We have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction. This separation makes use of two facts. One is that the concentration of solutes in the residual liquid at a given subzero temperature is fixed regardless of their concentration in the initial unfrozen solution. However, second, the fraction unfrozen at a given temperature is dependent on the initial solute concentration. Experimentally, oocytes were suspended in solutions of glycerol/buffered saline and EG/buffered saline of varying total solute concentration with the restriction that the mass ratios of glycerol and EG to salts are held constant. The oocytes were then cooled rapidly enough (20 degrees C/min) to avoid significant osmotic shrinkage, and the temperature at which IIF occurred was noted. When this is done, we find, as previously that the fraction of water remaining unfrozen at the temperature of IIF remains nearly constant at 5-8% for both glycerol and EG even though the IIF temperatures vary from -14 to -50 degrees C. But unlike the previous results, the salt and CPA concentrations in the unfrozen fraction vary by a factor of three. The present procedure for preparing the solutions produces a potentially complicating factor; namely, the cell volumes vary substantially prior to freezing: substantially greater than isotonic in some solutions; substantially smaller in others. However, the data in toto demonstrate that cell volume is not a determining factor in the IIF temperature.  相似文献   

12.
Stallion sperm exhibits great male-to-male variability in survival after cryopreservation. In this study, we have investigated if differences in sperm freezability can be attributed to membrane phase and permeability properties. Fourier transform infrared spectroscopy (FTIR) was used to determine supra and subzero membrane phase transitions and characteristic subzero membrane hydraulic permeability parameters. Sperm was obtained from stallions that show differences in sperm viability after cryopreservation. Stallion sperm undergoes a broad and gradual phase transition at suprazero temperatures, from 30-10°C, whereas freezing-induced dehydration of the cells causes a more severe phase transition to a highly ordered gel phase. Sperm from individual stallions showed significant differences in post-thaw progressive motility, percentages of sperm with abnormal cell morphology, and chromatin stability. The biophysical membrane properties evaluated in this study, however, did not show clear differences amongst stallions with differences in sperm freezability. Cyclodextrin treatment to remove cholesterol from the cellular membranes increased the cooperativity of the suprazero phase transition, but had little effects on the subzero membrane phase behavior. In contrast, freezing of sperm in the presence of protective agents decreased the rate of membrane dehydration and increased the total extent of dehydration. Cryoprotective agents such as glycerol decrease the amount of energy needed to transport water across cellular membranes during freezing.  相似文献   

13.
A A Shaw  A M Falick  M D Shetlar 《Biochemistry》1992,31(45):10976-10983
We report here the photoinduced formation of a thymine-N-acetyltyrosine adduct. Irradiation of dilute solutions of thymine in the presence of N-acetyltyrosine (NAT) leads to the formation of N-acetyl-4-hydroxy-3-(6-hydrothymin-5-yl)phenylalanine (I), isolated as a mixture of the 5R and 5S diastereoisomers; the photoreaction occurs when irradiation is done either at lambda = 254 nm or at wavelengths of lambda > 290 nm. Irradiation of thymidine in the presence of NAT and of thymine in the presence of tyrosine leads to analogous photoadducts. The photoreaction of thymine with NAT is completely quenched by oxygen and cannot be sensitized by acetone. The likely mechanism involves initial photoionization of the amino acid and deprotonation to form the phenoxyl radical. Thymine then probably captures the released aqueous electron, leading to protonation at C6 of the resulting radical anion. Combination of the phenoxyl and 5,6-dihydrothymin-5-yl radicals would then lead to formation of the final products. The quantum yield for production of the thymine-NAT adduct at pH 7.8 was estimated to be about 5.5 x 10(-4), while a value of 2.3 x 10(-3) was estimated for production of corresponding thymidine adduct at pH 8.1. The dependence of the quantum yield for adduct formation on pH has been determined for both the thymine and thymidine reactions with NAT; the maxima in the quantum yield profiles occur at pH 8-8.5, while appreciable values were measured at pH 7.5. We have also demonstrated that a similar reaction occurs when tyrosine is located within a peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Karanova MV  Gakhova EN 《Biofizika》2002,47(1):116-124
Gammarus lacustris were studied in an attempt to identify the mechanism of subzero temperature adaptation, which enables this species to survive in winter under natural conditions. G. lacustris hemolymph contained a high concentration of glucose (42.4 mg/ml of hemolymph). In addition, galactose, mannose, xylose, zellobiose, and unidentifiable disaccharides and oligosaccharides were found, though at much lower concentrations (0.94-3.26 mg/ml). The glycerol concentration in the gammarus hemolymph was about 5-20 times as low as in many other animals surviving at subzero temperatures (16.2 mg/ml). Other sugars and polyhydric alcohols were discovered only in traces amounts in the hemolymph. Antifreeze proteins were not found in the gammarus.  相似文献   

15.
One theory of freezing damage suggests that slowly cooled cells are killed by being exposed to increasing concentrations of electrolytes as the suspending medium freezes. A corollary to this view is that protective additives such as glycerol protect cells by acting colligatively to reduce the electrolyte concentration at any subzero temperature. Recently published phase-diagram data for the ternary system glycerol-NaCl-water by M. L. Shepard et al. (Cryobiology, 13:9-23, 1976), in combination with the data on human red cell survival vs. subzero temperature presented here and in the companion study of Souzu and Mazur (Biophys. J., 23:89-100), permit a precise test of this theory. Appropriate liquidus phase-diagram information for the solutions used in the red cell freezing experiments was obtained by interpolation of the liquidus data of Shepard and his co-workers. The results of phase-diagram analysis of red cell survival indicate that the correlation between the temperature that yields 50% hemolysis (LT50) and the electrolyte concentration attained at that temperature in various concentrations of glycerol is poor. With increasing concentrations of glycerol, the cells were killed at progressively lower concentrations of NaCl. For example, the LT50 for cells frozen in the absence of glycerol corresponds to a NaCl concentration of 12 weight percent (2.4 molal), while for cells frozen in 1.75 M glycerol in buffered saline the LT50 corresponds to 3.0 weight percent NaCl (1.3 molal). The data, in combination with other findings, lead to two conclusions: (a) The protection from glycerol is due to its colligative ability to reduce the concentration of sodium chloride in the external medium, but (b) the protection is less than that expected from colligative effects; apparently glycerol itself can also be a source of damage, probably because it renders the red cells susceptible to osmotic shock during thawing.  相似文献   

16.
The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (-20 degrees C without freezing and 25 degrees C) and three water activity levels (a(w)) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at -20 degrees C (in the liquid state) were more than 100 MPa less than those required at 25 degrees C, at pressures in the range of 100 to 300 MPa with an a(w) of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the a(w) was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm.  相似文献   

17.
Abstract

Stallion sperm exhibits great male-to-male variability in survival after cryopreservation. In this study, we have investigated if differences in sperm freezability can be attributed to membrane phase and permeability properties. Fourier transform infrared spectroscopy (FTIR) was used to determine supra and subzero membrane phase transitions and characteristic subzero membrane hydraulic permeability parameters. Sperm was obtained from stallions that show differences in sperm viability after cryopreservation. Stallion sperm undergoes a broad and gradual phase transition at suprazero temperatures, from 30–10°C, whereas freezing-induced dehydration of the cells causes a more severe phase transition to a highly ordered gel phase. Sperm from individual stallions showed significant differences in post-thaw progressive motility, percentages of sperm with abnormal cell morphology, and chromatin stability. The biophysical membrane properties evaluated in this study, however, did not show clear differences amongst stallions with differences in sperm freezability. Cyclodextrin treatment to remove cholesterol from the cellular membranes increased the cooperativity of the suprazero phase transition, but had little effects on the subzero membrane phase behavior. In contrast, freezing of sperm in the presence of protective agents decreased the rate of membrane dehydration and increased the total extent of dehydration. Cryoprotective agents such as glycerol decrease the amount of energy needed to transport water across cellular membranes during freezing.  相似文献   

18.
The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号