首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encysted embryos of Artemia contain latent mRNA, to a large extent associated with a fraction of cytoplasmic membranes. The membranes, purified by EDTA treatment and banding in a sucrose gradient at 1.17 g/cm3, include endoplasmic vesicles and mitochondria. The origin of the membrane-associated poly(A)+RNA was therefore investigated. In gel electrophoresis poly(A)+RNA from the purified membranes of dormant cysts forms two distinct bands at approx. 3 . 10(5) and 5 . 10(5) Da. Later during development the lighter component decreases. Nuclei from dormant cysts are devoid of poly(A)+RNA, while nuclei from developing embryos (50% emergence) contain a predominant poly(A)+RNA component of approx. 5 . 10(5) Da. 125I-labelled preparations of nuclear DNA and of nuclear and membrane-associated poly(A)+RNA were used in reassociation and hybridization experiments with excess nuclear DNA. Poly(A)+RNA from the membranes of dormant cysts hybridized to nuclear DNA to the same extent as the nuclear poly(A)+RNA from developing embryos. The hybridization of labelled, nuclear poly(A)+RNA to nuclear DNA was strongly inhibited by unlabelled membrane RNA from either dormant cysts or developing embryos. It is concluded that the stored, membrane-associated poly(A)+RNA in dormant cysts is essentially of nuclear origin. The 5 . 10(5)-Da component is largely homologous with the corresponding component of nuclear poly(A)+RNA at later stages.  相似文献   

2.
Messenger Ribonucleic Acid of Dormant Spores of Bacillus subtilis   总被引:4,自引:3,他引:1       下载免费PDF全文
Evidence of the presence of messenger ribonucleic acid (mRNA) in dormant spores of Bacillus subtilis has been obtained. The bulk RNA from spores was isolated and labeled in vitro with tritiated dimethyl sulfate. The spore RNA hybridized to 2.4 to 3.2% of the B. subtilis genome. The RNA hybridized to both the complementary heavy and light fractions of deoxyribonucleic acid (DNA). Bulk RNA from log-phase cells competed with virtually all the spore RNA for the heavy DNA fraction and with part of the spore RNA for the light DNA fraction. Bulk RNA from stage IV cells in sporulation also competed with all of the spore RNA for the heavy DNA fraction and with essentially all the spore RNA for the light DNA fraction. These results indicate that dormant spores contain mRNA species present in both log-phase cells and stage IV cells of sporulation. The RNA polymerase in the developing forespore must be able to recognize promotor sites for both log-phase and sporulation genes.  相似文献   

3.
4.
Encysted embryos of Artemia contain latent mRNA, to a large extent associated with a fraction of cytoplasmic membranes. The membranes, purified by EDTA treatment and banding in a sucrose gradient at 1.17 g/cm3, include endoplasmic vesicles and mitochondria. The origin of the membrane-associated poly(A)+RNA was therefore investigated. In gel electrophoresis poly(A)+RNA from the purified membranes of dormant cysts forms two distinct bands at approx. 3·105 and 5·105 Da. Later during development the lighter component decreases. Nuclei from dormant cysts are devoid of poly(A)+RNA, while nuclei from developing embryos (50% emergence) contain a predominant poly(A)+RNA component of approx. 5·105 Da. 125I-labelled preparations of nuclear DNA and of nuclear and membrane-associated poly(A)+RNA were used in reassociation and hybridization experiments with excess nuclear DNA. Poly(A)+RNA from the membranes of dormant cysts hybridized to nuclear DNA to the same extent as the nuclear poly(A)+RNA from developing embryos. The hybridization of labelled, nuclear poly(A)+RNA to nuclear DNA was strongly inhibited by unlabelled membrane RNA from either dormant cysts or developing embryos. It is concluded that the stored, membrane-associated poly(A)+RNA in dormant cysts is essentially of nuclear origin. The 5·105-Da component is largely homologous with the corresponding component of nuclear poly(A)+RNA at later stages.  相似文献   

5.
RNA-specific ribonucleotidyl transferases   总被引:3,自引:0,他引:3       下载免费PDF全文
Martin G  Keller W 《RNA (New York, N.Y.)》2007,13(11):1834-1849
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.  相似文献   

6.
RNA from developing embryos of Artemia salina (5, 10, and 20 h after re-initiation of development) was translated 3-10 times more efficiently in a rabbit reticulocyte lysate cell-free protein synthesizing system than RNA from dormant gastrulae. The latter did not appear to contain any significant amount of translation inhibitor activity. Ninety percent of the translatable activity in dormant gastrulae was recovered as poly(A)--RNA, whereas 80% of that in post-gastrular developing embryos was present as poly(A)+-RNA. The size of most polypeptides coded for by dormant gastrular RNA was less than 130,000 daltons whereas the size of those coded for by developing embryonic RNA was up to 200,000 daltons, which correlated with a corresponding shift to poly A-containing RNA of higher molecular weight. Two major polypeptides of about 37,000 daltons coded for by dormant gastrular RNA disappeared at 20 h after resumption of development. Hybridization of complementary DNA (cDNA) to a 1000-fold excess of the homologous poly(A)+-RNA revealed the presence of three complexity classes of mRNA. Forty-five percent, 30%, and 25% of RNA in dormant gastrulae were present as high, middle, and low abundance classes comprising about 10, 80, and 9700 species, respectively whereas in the nauplii there were 10, 150, and 7900 species of high, middle, and low abundancy sequences, respectively. Heterologous hybridizations using cDNA complementary to highly abundant messenger population of nauplii (isolated by chromatography on hydroxyapatite) to poly(A)+-RNA from dormant cysts showed considerably divergence in this class of messengers from the two developmental stages. Re-initiation of development of dormant Artemia gastrulae is thus characterized by a "re-programming" seen as a simultaneous and rapid increase in the polyadenylation and translatability of poly(A)+-RNA accompanied by a qualitative change in its sequence complexity.  相似文献   

7.
Macromolecule syntheses, especially incorporation of radioactive labelled precursors into proteins, RNA and DNA were investigated. Some results on the action of phytohormones applied to dormant seeds and on the influence on water stress conditions by interruption of imbibition even before the radicle protrudes, on germination as well as on RNA and DNA synthesis were analysed. Benzylaminopurine and ethylene, applied in combination, could break dormancy of dormant seeds; a process which is correlated with the onset of DNA synthesis. Interruption of the imbibition during the time of onset of DNA synthesis (after 16 h of imbibition) did not impair the germination, and the protein, RNA and DNA syntheses started after reimbibition at that level which was reached at the interruption point. Only after a break in later phases (after 22 h of imbibition) a weak impairment of germination could be observed.  相似文献   

8.
Bacteria-free cultures of Spirodela oligorrhiza continue to increase in frond number for 2 to 3 days after transfer to darkness. There is then no further increase in frond number for 3 to 4 weeks, although DNA, RNA and protein synthesis continue at decreased rates and starch accumulates in the plants. We refer to such ;non-growing' plants in darkness as dormant. Adding kinetin to dormant Spirodela initiated increased DNA, RNA and protein synthesis within 1h, although new fronds were not detected until 24h after the addition of kinetin. The frond number then continued to increase. Starch accumulated in dormant plants. Accumulation of starch appeared to be a consequence of inhibition of growth rather than the converse. No evidence was obtained for a block in [(14)C]glucose metabolism that might explain the lack of growth in darkness in the absence of kinetin. In darkness, more ribosomes were membrane-bound in dormant Spirodela than in Spirodela growing with kinetin. Similarities between the response of Spirodela to darkness, stringent control in bacteria and pleiotypic controls in animal cells are discussed. It is suggested that all three processes are ultimately controlled by specific protein kinases that are individually sensitive to different effectors.  相似文献   

9.
Seed germination of Agrostemma githago is prevented by inhibitors of protein and RNA synthesis. Thus protein as well as RNA synthesis are essential prerequisites for germination. Early protein synthesis of Agrostemnia embryos can be completely inhibited by cycloheximide and cordycepin. During the aging of seeds there is a considerable decrease in germination capacity and protein synthesis. In dormant and afterripened embryos of Agrostemma githago14C-leucine and 14C-uracil are incorporated in protein and RNA respectively with nearly the same intensity, whereas RNA and protein synthesis of dormant seeds and embryos starts earlier than in those subjected to afterripening. 3H-uracil-labelled RNA from dormant and afterripened embryos are able to hybridize on oligo-dT-cellulose to the same extent. There is a similarity in the protein pattern of dormant and afterripened embryos revealed by electrophoresis in polyacrylamide gels of double-labelled proteins. According to these results dormancy of Agrostemma githago is not caused by a general but by a specific metabolic block.  相似文献   

10.
DNA, RNA, protein and heterochromatin were measured cytophotometrically in developing soybean (Glycine max) seeds. The average 2C DNA content for the soybean genome was 2.64 pg. The amounts of nuclear DNA in embryo axes showed no significant change during embryo development, whereas the DNA content in cotyledon nuclei increased significantly from 3.58 pg to 5.49 pg. The number of endopolyploid nuclei increased from 26% to 48% and the DNA content from 4.45 to 5.49 pg after cessation of cell division. The changes in RNA and protein content during embryo development were in general similar to those in DNA content. This can be interpreted that increased DNA levels in soybean cotyledons generated during embryogeny increase the protein synthesizing capacity. During the first 15 days of germination, the number of endopolyploid nuclei in cotyledons declined from 46% to 4%, and this decline is interpreted as DNA degradation providing a ready source of nucleosides and phosphates during early embryo growth. A later decline, however, between 15 and 20 days after germination, was age related similar to leaf senescence, because the percentage of endopolyploid nuclei remained unchanged while the number of non-viable cells increased. In senescing cotyledons, 73% and 80% of RNA and protein but only 20% of DNA were lost, as compared to dormant cotyledons. The heterochromatin (condensed chromatin) measurements indicated that nuclei of metabolically inactive dormant and senescent cotyledon nuclei contained an average of 33% more heterochromatin than nuclei from the green cotyledons of seedlings.  相似文献   

11.
The regulation of nucleic acid and protein synthesis in dormant, thermodormant, and after-ripened embryos of Vaccaria pyramidata (Caryophyllaceae) has been studied. Germination of after-ripened V. pyramidata seeds is prevented by inhibitors of protein, RNA, and DNA synthesis. The synthesis of both protein and RNA is activated at the beginning of imbibition, whereas [3H]thymidine incorporation does not start until the second period of the imbibition phase. [3H]Thymidine incorporation is greatly reduced in embryos treated with cycloheximide or 6-methylpurine. There is no correlation between the level of [3H]uracil and l-[14C]leucine incorporation into macromolecules and the physiological state of the seeds: tRNA, ribosomal RNA, and poly(A)-containing RNA (probably mRNA) as well as proteins are synthesized at the same rate in both dormant and thermodormant embryos as in after-ripened embryos. The protein patterns of dormant and after-ripened embryos are similar, as shown by electrophoresis and electrofocusing of double-labeled proteins. The level of DNA synthesis, measured as [3H]thymidine incorporation, may, on the other hand, indicate the physiological activity of the seeds: [3H]Thymidine is incorporated at a high rate in after-ripened embryos only and remains at a low level in dormant or thermodormant embryos. This correlation is, however, observed only in the axes. DNA synthesis in the cotyledons does not show any relation to the developmental stage of the seeds. These results are discussed in relation to the regulation of dormancy and after-ripening of seeds.  相似文献   

12.
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.  相似文献   

13.
Summary Parenchyma cells of dormant tubers ofHelianthus tuberosus L. cv. OB1 (Jerusalem artichoke) contain a very low amount of hormones, therefore they respond to 2,4-D or IAA treatment by dividing and synthesizing RNA, DNA, and polyamines.In particular the activation of the dormant tissues induces an early synthesis of DNA, which reaches the maximum at 3 hours, much before the beginning of the S phase (12 hours). By supplying [6-3H] thymidine and carrying out electron microscopic autoradiography, we were able to determine that plastids and mitochondria were the organelles responsible for this early synthesis while the DNA in the nucleus first appeared labeled at 15 hours.In addition, ultrastructural observations carried out to compare the dormant cells with activated ones, showed an increase in the nucleolar volume, a different organization of the tubular complex of the plastids and several other ultrastructural changes which indicate that at 3 hours some fundamental metabolic processes are already active; they become even more evident later on.The implications of these results in the physiology of the tuber cells during activation are discussed.  相似文献   

14.
RNA was extracted from dormant and germinating Bacillus subtilis 168 spores (intact spores and chemically decoated spores) by using rapid rupture followed by acid–phenol extraction. Spore germination progress was monitored by assaying colony forming ability before and after heat shock and by reading the optical density at 600 nm. The purity, yield, and composition of the extracted RNA were determined spectrophotometrically from the ratio of absorption at 260 nm to that at 280 nm; in a 2100 BioAnalyzer, giving the RNA yield/108 spores or cells and the distribution pattern of rRNA components. The method reported here for the extraction of RNA from dormant spores, as well as during different phases of germination and outgrowth, has proven to be fast, efficient and simple to handle. RNA of a high purity was obtained from dormant spores and during all phases of germination and growth. There was a significant increase in RNA yield during the transition from dormant spores to germination and subsequent outgrowth. Chemically decoated spores were retarded in germination and outgrowth compared with intact spores, and less RNA was extracted; however, the differences were not significant. This method for RNA isolation of dormant, germinating, and outgrowing bacterial endospores is a valuable prerequisite for gene expression studies, especially in studies on the responses of spores to hostile environmental conditions.  相似文献   

15.
The structure of DNA extracted from dormant and germinating spores of B. cereus T was investigated using circular dichroism and other methods. No significant differences between DNAs extracted from vegetative cells and from spores of various stages could be found by analyses of CD spectra, CsCl density gradient centrifugation, melting profiles and template activity. All the DNA preparations were in B conformation and had the same density (1.695), Tm (83°C) and template activity in the reaction of DNA-dependent RNA polymerase. An abnormal DNA fraction of high density which was formerly found in B. cereus spores or a stable DNA complex with protein and/or RNA was not detected in the present extracts of spores. Preliminary X-ray analyses of intact spores indicate that the structure of DNA in spores is not so different from B form.  相似文献   

16.
Ribosomes were isolated from dormant and germinating conidia of Asp. oryzae No. 13. The ribosomes which consisted of 80 S were easily dissociated into 40 S and 60 S in low Mg+ + buffer. Polyribosomes were not found in dormant conidia, but were found in germinating conidia. Ribosomes in Aspergillus fungi consisted of almost equal amount of RNA and protein, and the base compositions of RNA were alike, as compared as ribosomal RNA between dormant and germinating conidia.  相似文献   

17.
Outgrowth of B. subtilis spores depends on the action of DNA gyrase (comp. Matsuda and Kameyama 1980). Application of nalidixic acid (100 micrograms/ml) to dormant spores of Bacillus subtilis prevents the outgrowth. Application of nalidixic acid (100 micrograms/ml) during the early outgrowth phase (after a 20 min germination period) does not prevent, but only delay spore outgrowth. Germination of spores is not influenced. Nalidixic acid is an effective inhibitor of RNA synthesis in outgrowing spores, whereas vegetative cells are more resistant. Spores can grow out inspite of a remarkably reduced intensity of RNA synthesis. Nalidixic acid particularly inhibits the synthesis of stable RNA, probably that of ribosomal RNA. We suggest that DNA gyrase-catalyzed alterations in DNA structure are involved in the regulation of the gene expressional program of outgrowing B. subtilis spores.  相似文献   

18.
Studies on the timing of incorporation of labeled acetate in relationship to other cellular events in phytohemagglutinin (PHA)-treated lymphocytes have suggested that acetylation of nuclear histones may constitute an important regulatory mechanism for gene activation. In the present investigation, it was shown that PHA stimulation of lymphocytes from a tuberculin-positive patient caused an early increased incorporation of 14C-acetate prior to RNA and DNA synthesis. Lymphocytes from the same patient, however, repeatedly showed no increased incorporation of 14C-acetate following exposure to the sensitizing antigen, tuberculin (PPD), even though RNA and DNA synthesis were markedly stimulated. These results suggest that regulatory mechanisms of DNA template activity other than acetylation may be operative in sensitized lymphocytes responding to specific antigen. One possible explanation for the differences in 14C-acetate incorporation is that the increased uptake of acetate exhibited by PHA-treated cells is an effect related to nonspecific membrane changes caused by the PHA. If this is the case, then template regulation in PHA and antigen-stimulated lymphocytes may be achieved via similar but yet to be defined mechanisms.  相似文献   

19.
Stimulated lymphocytes which pass through the cell cycle may be distinguished from dormant G0 lymphocytes rapidly by flow cytometry. The method is based on cell incubation with 5-bromodeoxyuridine (BUdR) and their subsequent staining with acridine orange under conditions in which cellular DNA and RNA stain differentially. The DNA-specific green fluorescence of stimulated, cycling cells is suppressed while RNA-specific red fluorescence is affected only minimally. It is possible, therefore, to distinguish cycling vs non-cycling cells based on two entirely different parameters, i.e. BUdR incorporation and RNA content.  相似文献   

20.
连接是一种主要的DNA处理过程。由于较低的商业成本以及核酸底物识别的灵活性,T4 DNA连接酶被广泛应用于生物分子工程,特别是特定核酸序列的等位特异性连接检测。本文评估了在T4 DNA连接酶介导的连接反应中,引入额外的错配碱基对所产生的影响。设计了超过150组DNA/DNA或DNA/RNA带有的额外错配碱基对的组合。结果发现,引入额外的错配碱基对后,T4 DNA 连接酶在DNA/DNA连接中特异性可提高60倍以上,而在DNA/RNA连接中特异性只能提高2倍。在等位特异性连接中,有的错配碱基对可使T4 DNA连接酶的特异性提高600多倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号