共查询到20条相似文献,搜索用时 15 毫秒
1.
In the chain of events by which chemotactic peptides stimulate NADPH oxidase-catalyzed superoxide formation in human neutrophils, the involvements of a pertussis toxin-sensitive guanine nucleotide-binding protein (N-protein), mobilization of intracellular calcium and protein kinase C stimulation have been proposed. Superoxide formation was studied in membranes from human neutrophils; NADPH oxidase was stimulated by arachidonic acid in the presence of neutrophil cytosol. Fluoride and stable GTP analogues, such as GTP gamma S and GppNHp, which all activate N-proteins, enhanced NADPH oxidase activity up to 4-fold. GDP beta S inhibited the effect of GTP gamma S. These data suggest that NADPH oxidase is regulated by an N-protein, independent of an elevation of the cytoplasmic calcium concentration. 相似文献
2.
Kinetics of cell-free activation of neutrophil NADPH oxidase. Effects of neomycin and guanine nucleotides.
下载免费PDF全文

The effects of neomycin, fluoride and the non-hydrolysable guanine nucleotide analogue GTP gamma S on the kinetics of cell-free activation of NADPH oxidase in membranes of resting human neutrophils were investigated. Arachidonate-mediated activation of the oxidase followed a first-order reaction course (kobs. = 0.39 min-1 at 26 degrees C). In the presence of NaF during the activation process, activity was enhanced while the activation rate was slightly reduced (kobs. = 0.25 min-1 at 26 degrees C). Neomycin blocked activation (half-maximal effect at 25 microM) without affecting rates of superoxide release by preactivated enzyme in vitro or in vivo. In spite of reduced specific activity neither the first-order rate constant of the activation nor the Km of the oxidase were altered by neomycin. Oxidase activated in the presence of GTP gamma S exhibited increased specific activity and unchanged Km; the course of the reaction deviated from first-order kinetics. Kinetic evidence is presented for two separate activation reactions: a GTP gamma S-independent, basal, first-order process and a GTP gamma S-dependent sigmoid activation process. The results are compatible with the existence in neutrophil membranes of two separate pools of dormant oxidase. An alternative scheme of the formation of two active forms of NADPH oxidase is also presented. 相似文献
3.
Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils
Gorudko IV Mukhortava AV Caraher B Ren M Cherenkevich SN Kelly GM Timoshenko AV 《Archives of biochemistry and biophysics》2011,516(2):173-181
The gp91phox subunit of flavocytochrome b558 is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b558. gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin–gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H2O2 generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H2O2 production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins. 相似文献
4.
The respiratory burst oxidase is a multimeric enzyme responsible for O2- production by stimulated neutrophils and a few other cell types. In the resting neutrophil, the oxidase is dormant, and its subunits are distributed between the cytosol, in which they appear to exist in the form of a multisubunit complex, and the plasma membrane; but, when the neutrophil is activated, the cytosolic complex translocates to the membrane to assemble the active enzyme. Using a cell-free system in which oxidase activity was elicited with SDS, we examined the effects of GTP gamma S and dioctanoylglycerol (DiC8) on both the activation of O2- production and the transfer of the cytosolic oxidase components p47phox and p67phox to the plasma membrane. GTP (added as undialyzed cytosol) and GTP gamma S augmented the transfer of the oxidase components to the plasma membrane and was essential for the acquisition of O2- producing activity by the oxidase. DiC8 also supported the SDS-mediated transfer of oxidase components to the membrane, but O2- production did not take place unless GTP or GTP gamma S was present. In the presence of these nucleotides, however, DiC8 augmented both translocation and O2- production. We interpreted these results in terms of a mechanism in which 2 membrane-binding sites are created during the activation of the cytosolic complex, one for diacylglycerol and the other for a second site on the membrane. Development of the second membrane-binding site depends upon the action of a G protein and is essential for the expression of oxidase activity. The results further suggested that the priming of the respiratory burst oxidase in intact neutrophils might be due to an increase in membrane diacylglycerol concentration that occurs in response to the priming stimulus. Because of the increased diacylglycerol content, a larger than usual amount of active respiratory burst oxidase could be assembled on the primed plasma membrane when the neutrophil is fully activated. 相似文献
5.
The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides 总被引:3,自引:0,他引:3
R Seifert W Rosenthal G Schultz T Wieland P Gierschick K H Jakobs 《European journal of biochemistry》1988,175(1):51-55
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase. 相似文献
6.
Hormonal activation of adenylate cyclase in macrophage membranes is regulated by guanine nucleotides 总被引:7,自引:0,他引:7
Many macrophage functions such as chemotaxis, phagocytosis, enzyme secretion, and cytotoxicity are influenced by intracellular cyclic nucleotide levels, but the regulatory mechanisms involved are poorly defined. We have developed methods that allowed us to study the activation of AC in isolated guinea pig (g.p.) macrophage membranes. AC in these membrane preparations could be stimulated approximately twofold by guanine nucleotides. We could not obtain any hormonal activation of membrane-bound AC in the absence of guanine nucleotides. In the presence of GTP, however, the hormones isoproterenol and PGE1 elicited an additional threefold rise in AC activity, which subsided after approximately 15 min. As little as 10(-8) M concentrations of these two hormones induced significant elevations of AC activity. Replacement of GTP by its nonhydrolyzable analogue Gpp(NH)p resulted in a persistent hormone-independent activation of AC, and addition of hormones enhanced this level of activation. Thus, GTP-ase activity is present in macrophage membrane preparations and serves to regulate AC activation. Hormonal stimulation of AC was receptor mediated, because the effect of the beta-adrenergic agonist isoproterenol, but not PGE1, was inhibited by the beta-adrenergic blocker propranolol. In addition, the potency series of PG corresponded to that observed for stimulation of cAMP production in intact g.p. macrophages, i.e., PGE1 = PGE2 greater than PGA1 greater than PGF2 alpha. AC activation by PG in the membrane preparation was inhibited by an alpha-adrenergic agonist, thus demonstrating one means for down regulating cAMP production in g.p. macrophages. Our studies also showed that certain hormones (e.g., beta-adrenergic agonists, PG) can exert their effect on cAMP production by stimulation of membrane-bound AC, whereas other agents such as lectins or arachidonic acid require additional intracellular components to elevate cAMP levels in macrophages. The mechanism of activation of AC by hormones in g.p. macrophage membranes appears to fit the model of a ternary complex, the components of which include the hormone receptor, AC, and guanine nucleotide regulatory protein, which transmits the signal from the receptor to AC. 相似文献
7.
Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system. 相似文献
8.
L Leino L Forbes A Segal S Cockcroft 《Biochemical and biophysical research communications》1999,265(1):29-37
GTPgammaS activates the NADPH oxidase and this activity declines rapidly with time after preexposure to streptolysin O. This was not due to loss of p47(phox), p67(phox), or Rac. To identify the component(s) leaking out of the permeabilized cell responsible for loss of activity, a GTPgammaS-dependent reconstitution assay was established. Neutrophil cytosol was subjected to chromatographic fractionation steps for purification of the minimum fraction required to restore activity. The reconstitution of the GTPgammaS-stimulated activity was dependent on ATP. The inhibitors staurosporine and calphostin C greatly reduced the activity in the reconstitution assay, implicating the involvement of a protein kinase C (PKC) pathway. PKC isoforms beta and delta were eliminated as the active factors in the most pure reconstitution fraction. With this novel cell-based reconstitution assay, we have identified the requirement for a protein kinase, or its substrate, for the restoration of GTPgammaS activation of the NADPH oxidase. 相似文献
9.
Protein kinase C-dependent and -independent activation of the NADPH oxidase of human neutrophils 总被引:5,自引:0,他引:5
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production. 相似文献
10.
Heo SK Yun HJ Park WH Park SD 《Biochemical and biophysical research communications》2008,371(4):834-840
Homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus (HSV) glycoprotein D (gD) for herpes virus entry mediator (HVEM; TR2) (LIGHT), a ligand of herpes virus entry mediator (HVEM), increased reactive oxygen species (ROS) and enhanced the destruction of bacteria in human monocytes. In this study, rhLIGHT was found to increase the expression of the chemokine receptors, chemokine receptor 1 (CCR1) and CCR2, as well as to accelerate the migration activity of human monocytes. Additionally, rhLIGHT was found to increase ROS via NADPH oxidase p47phox phosphorylation, which was found to be required for LIGHT-induced NF-κB activation, CCR1 and CCR2 expression, migration and IL-8 and TNF-α production. Taken together, these results indicate that NADPH oxidase activation is required for rhLIGHT-induced migration in human monocytes. 相似文献
11.
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity. 相似文献
12.
Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes 总被引:9,自引:0,他引:9
S Pontremoli B Sparatore F Salamino M Michetti O Sacco E Melloni 《Biochemistry international》1985,11(1):35-44
Human neutrophil calpain is a monomer of 85 kDa molecular weight. The proteinase shows an absolute requirement for Ca2+ with maximal catalytic activity at 0.1-0.2 mM Ca2+ and negligible activity at 1-5 microM Ca2+. At this concentration of Ca2+ neutrophil calpain becomes active and reaches 65% of its maximal catalytic activity following interaction with plasma membranes. The activation is fully reversible since the enzyme returns to its native, high Ca2+ requiring form following removal of the membranes. Membrane phospholipids appear to be the physiological compounds responsible for the promotion of such reversible activation. Unlike other Ca2+ dependent proteinases, neutrophil calpain does not undergo conversion to a low Ca2+ requiring form by limited autoproteolysis. 相似文献
13.
NADPH oxidase in membranes of undifferentiated and dimethylsulphoxide-differentiated HL-60 cells was activated by arachidonic acid (AA) in the presence of Mg2+ and a cytosolic cofactor (CF) found in differentiated HL-60 cells. Basal superoxide (O2-) formation was enhanced several-fold by addition of the stable GTP-analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), prior to AA and was completely prevented by that of GDP. Basal and GTP gamma S-stimulated O2- formation was terminated by GDP. In the presence of Mg2+ or EDTA, basal O2- formation ceased after 25 or 10 min, respectively, and was reinitiated by GTP gamma S or GTP gamma S plus Mg2+. Albumin terminated O2- formation, which was reactivated by AA in the presence of GTP gamma S. Our results show that (1) activation of NADPH oxidase in HL-60 membranes is dependent on endogenous GTP, Mg2+, AA and CF, which is induced during myeloid differentiation, and that (2) NADPH oxidase activation is a reversible process modulated by exogenous guanine nucleotides at various stages of activity of NADPH oxidase. We suggest crucial roles of guanine nucleotide-binding proteins in the activation, deactivation and reactivation of the enzyme. 相似文献
14.
Ahluwalia J 《Biochemical and biophysical research communications》2008,368(3):656-661
Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (Ie) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated Ie when the NADPH oxidase is activated by NADPH and GTPγS. The neutrophil Ie was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in Ie measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The Ie depolarises the neutrophil plasma membrane at a rate of 2.3 V s−1 and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl2 depolarised the membrane potential to +97.8 ± 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition. 相似文献
15.
Abstract Stimulation of human neutrophils with the chemotactic peptide fMet-Leu-Phe results in activation of a rapid, transient burst of oxidant secretion, which reaches a maximal rate by about 1 min after stimulation. This phase of oxidant secretion is then followed by intracellular oxidant production, which is detected by luminol chemiluminescence but not by assays such as cytochrome c reduction or scopoletin oxidation. The rapid phase of oxidant secretion requires increases in intracellular free Ca2+ and phospholipase A2 activity, but not the activities of phospholipase D or D or protein kinase C. In contrast, intracellular oxidant production requires the activities of phospholipase D and protein kinase C. A model is thus proposed suggesting the sequential activation of different phospholipases which activate oxidase molecules on the plasma membrane or else from the membranes of specific granules. 相似文献
16.
E A Eklund M Marshall J B Gibbs C D Crean T G Gabig 《The Journal of biological chemistry》1991,266(21):13964-13970
Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G protein. 相似文献
17.
F Rossi M Grzeskowiak V Della Bianca F Calzetti G Gandini 《Biochemical and biophysical research communications》1990,168(1):320-327
It is widely accepted that the activation of the NADPH oxidase of phagocytes is linked to the stimulation of protein kinase C by diacylglycerol formed by hydrolysis of phospholipids. The main source would be choline containing phospholipid via phospholipase D and phosphatidate phosphohydrolase. This paper presents a condition where the activation of the respiratory burst by FMLP correlates with the formation of phosphatidic acid, via phospholipase D, and not with that of diacylglycerol. In fact: 1) in neutrophils treated with propranolol, an inhibitor of phosphatidate phosphohydrolase, FMLP plus cytochalasin B induces a respiratory burst associated with a stimulation of phospholipase D, formation of phosphatidic acid and complete inhibition of that of diacylglycerol. 2) The respiratory burst by FMLP plus cytochalasin B lasts a few minutes and may be restimulated by propranolol which induces an accumulation of phosphatidic acid. 3) In neutrophils stimulated by FMLP in the absence of cytochalasin B propranolol causes an accumulation of phosphatidic acid and a marked enhancement of the respiratory burst without formation of diacylglycerol. 4) The inhibition of the formation of phosphatidic acid via phospholipase D by butanol inhibits the respiratory burst by FMLP. 相似文献
18.
Effect of guanine nucleotides on polyphosphoinositide synthesis in rat liver plasma membranes. 总被引:1,自引:0,他引:1
下载免费PDF全文

The subcellular distributions of endogenous ADP-ribosylation products in hearts from 1-day-old neonatal and adult rats were investigated. In adult rat heart a 52 kDa mono-ADP-ribosylation product was identified in the plasma membrane fraction. In contrast, in neonatal rat heart a 130 kDa poly-ADP-ribosylation product was present in the nuclear fraction. The monomeric and polymeric nature of the two ADP-ribosylation products was determined by their sensitivity to thymidine and by analysis of their snake venom phosphodiesterase products. NADP+ enhanced both the mono- and polymeric reactions. The ADP-ribose-protein linkage of the adult 52 kDa product was stable to 1 h of treatment with hydroxylamine (0.5 M) and mercury ions, but was sensitive to alkali and a 12 h treatment with hydroxylamine (1 M). This is suggestive of an arginine linkage. The 130 kDa poly-ADP-ribosylation product from the neonatal rat heart was alkalilabile but stable to both hydroxylamine and HgCl2. This implies the presence of an unusual linkage in the 130 kDa product. The presence of these different ADP-ribosylation products in adult and neonatal rat hearts suggests the possible importance of these proteins and their ADP-ribosylation during cardiac development. 相似文献
19.
Inositol lipids and phosphatidic acid inhibit cell-free activation of neutrophil NADPH oxidase 总被引:1,自引:0,他引:1
The effect of inositol lipids on the SDS-initiated cell-free activation of NADPH oxidase in membranes of human neutrophils was investigated. In a system consisting of low density membranes, cytosol and SDS, low doses of phosphatidylinositol, phosphatidylinositol mono- and biphosphates and phosphatidic acid interfered with activation of the oxidase. The inhibition was relieved by increasing concentrations of the cytosol. Conversely, preincubation of multilamellar phosphoinositide vesicles with cytosol reduced its ability to support activation of the oxidase. 相似文献
20.
Doussière J Bouzidi F Vignais PV 《Biochemical and biophysical research communications》2001,285(5):1317-1320
By photoaffinity labeling with a tritiated azido derivative of phenylarsine oxide (PAO), 4[N-(4-azido-2-nitrophenyl)amino-[(3)H]acetamido]phenylarsine oxide ([(3)H]azidoPAO), we demonstrate that PAO binds selectively to the S100 A8/A9 complex of bovine neutrophil cytosol (previously known as p7/p23, homologous to the MRP-8/MRP-14 complex of human phagocytes). Using a semirecombinant cell free assay of oxidase activation and the determination of oxidase activity by the production of the superoxide anion O(-)(2), we found that the PAO binding protein (p7/p23) was able to potentiate the activation of NADH oxidase and that this effect was synergized by PAO. The p7/p23 protein complex of bovine neutrophils can therefore be considered as a positive regulator of NADPH oxidase activation in neutrophils. 相似文献