首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of fosfomycin resistance protein FosA from transposon Tn2921 has been established at a resolution of 2.5 A. The protein crystallized without bound Mn(II) and K+, ions crucial for efficient catalysis, providing a structure of the apo enzyme. The protein maintains the three-dimensional domain-swapped arrangement of the paired betaalphabetabetabeta-motifs observed in the genomically encoded homologous enzyme from Pseudomonas aeruginosa (PA1129). The basic architecture of the active site is also maintained, despite the absence of the catalytically essential Mn(II). However, the absence of K+, which has been shown to enhance enzymatic activity, appears to contribute to conformational heterogeneity in the K(+)-binding loops.  相似文献   

2.
The metalloglutathione transferase FosA catalyzes the conjugation of glutathione to carbon-1 of the antibiotic fosfomycin, rendering it ineffective as an antibacterial drug. Codon randomization and selection for the ability of resulting clones to confer fosfomycin resistance to Escherichia coli were used to identify residues critical for FosA function. Of the 24 codons chosen for randomization, 16 were found to be essential because only the wild type amino acid was selected. These included ligands to the Mn(2+) and the K(+), residues that furnish hydrogen bonds to fosfomycin, and residues located in a putative glutathione/fosfomycin-binding site. The remaining eight positions randomized were tolerant to substitutions. Site-directed mutagenesis of some of the essential and tolerant amino acids to alanine was performed, and the activity of the purified proteins was determined. Mutation of the residues that are within hydrogen bonding distance to the oxirane or phosphonate oxygens of fosfomycin resulted in variants with very low or no activity. Mutation of Ser(94), which bridges one of the phosphonate oxygens with a potassium ion, resulted in insoluble protein. The Y39A mutation in the putative glutathione-binding site resulted in a 4-fold increase in the apparent K(m) for glutathione. Only two of the amino acids in the substrate-binding site are conserved in the related fosfomycin resistance proteins FosB and FosX, whereas no amino acids in the putative glutathione-binding site are conserved.  相似文献   

3.
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyzes the first step in the biosynthesis of peptidoglycan, involving the transfer of the intact enolpyruvyl moiety from phosphoenolpyruvate to the 3'-hydroxyl group of UDP-N-acetylglucosamine (UDPNAG). The enzyme is irreversibly inhibited by the antibiotic fosfomycin. The inactivation is caused by alkylation of a highly conserved cysteine residue (C115) that participates in the binding of phosphoenolpyruvate. The three-dimensional structure of the enzyme suggests that two residues may play a decisive role in fosfomycin binding: K22 and R120. To investigate the role of these residues, we have generated the K22V, K22E, K22R and R120K single mutant proteins as well as the K22V/R120K and K22V/R120V double mutant proteins. We demonstrated that the K22R mutant protein behaves similarly to wild-type enzyme, whereas the K22E mutant protein failed to form the covalent adduct. On the other hand, the K22V mutant protein requires the presence of UDPNAG for the formation of the adduct indicating that UDPNAG plays a crucial role in the organization of productive interactions in the active site. This model receives strong support from heat capacity changes observed for the K22V/R120K and R120K mutant proteins: in both mutant proteins, the heat capacity changes are markedly reduced indicating that their ability to form a closed protein conformation is impeded due to the R120K exchange.  相似文献   

4.
Fosfomycin [(1R,2S)-epoxypropylphosphonic acid] is a simple phosphonate found to have antibacterial activity against both Gram-positive and Gram-negative microorganisms. Early resistance to the clinical use of the antibiotic was linked to a plasmid-encoded resistance protein, FosA, that catalyzes the addition of glutathione to the oxirane ring, rendering the antibiotic inactive. Subsequent studies led to the discovery of a genomically encoded homologue in the pathogen Pseudomonas aeruginosa. The proteins are Mn(II)-dependent enzymes where the metal is proposed to act as a Lewis acid stabilizing the negative charge that develops on the oxirane oxygen in the transition state. Several simple phosphonates, including the antiviral compound phosphonoformate (K(i) = 0.4 +/- 0.1 microM, K(d) approximately 0.2 microM), are shown to be inhibitors of FosA. The crystal structure of FosA from P. aeruginosa with phosphonoformate bound in the active site has been determined at 0.95 A resolution and reveals that the inhibitor forms a five-coordinate complex with the Mn(II) center with a geometry similar to that proposed for the transition state of the reaction. Binding studies show that phosphonoformate has a near-diffusion-controlled on rate (k(on) approximately 10(7)-10(8) M(-1) s(-1)) and an off rate (k(off) = 5 s(-1)) that is slower than that for fosfomycin (k(off) = 30 s(-1)). Taken together, these data suggest that the FosA-catalyzed reaction has a very early transition state and phosphonoformate acts as a minimal transition state analogue inhibitor.  相似文献   

5.
菠萝叶片PEP羧激酶与底物OAA和ATP及配基Mn~(2+)等结合时引起紫外差示吸收光谱峰位和方向上的变化。OAA与酶结合诱导产生的差示吸收光谱在268—280nm处有一个宽负峰。ATP与酶结合出现两个差示负峰(242.5和273.5nm)。双底物OAA和ATP同时与酶结合,光谱上呈现252nm和268nm两个峰。Mn~(2+)不论与ATP或与ATP+OAA一起与酶反应时,皆使原来的峰位漂移,且正负方向逆转。酶蛋白在323nm有最大的荧光发射。OAA引起荧光发射强度增大,ATP及ATP+Mn~(2+)则减弱荧光发射。Mn~(2+)与OAA及ATP的复合效应导致荧光强度进一步减弱。  相似文献   

6.
The fosfomycin resistance protein FosA is a member of a distinct superfamily of metalloenzymes containing glyoxalase I, extradiol dioxygenases, and methylmalonyl-CoA epimerase. The dimeric enzyme, with the aid of a single mononuclear Mn2+ site in each subunit, catalyzes the addition of glutathione (GSH) to the oxirane ring of the antibiotic, rendering it inactive. Sequence alignments suggest that the metal binding site of FosA is composed of three residues: H7, H67, and E113. The single mutants H7A, H67A, and E113A as well as the more conservative mutants H7Q, H67Q, and E113Q exhibit marked decreases in the ability to bind Mn2+ and, in most instances, decreases in catalytic efficiency and the ability to confer resistance to the antibiotic. The enzyme also requires the monovalent cation K+ for optimal activity. The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. coli. K+ can be replaced by other monovalent cations of similar ionic radii. Several lines of evidence suggest that the K+ ion interacts directly with the active site. Interaction of the enzyme with K+ is found to be dependent on the presence of the substrate fosfomycin. Moreover, the E113Q mutant exhibits a kcat which is 40% that of wild-type in the absence of K+. This mutant is not activated by monovalent cations. The behavior of the E113Q mutant is consistent with the proposition that the K+ ion helps balance the charge at the metal center, further lowering the activation barrier for addition of the anionic nucleophile. The fully activated, native enzyme provides a rate acceleration of >10(15) with respect to the spontaneous addition of GSH to the oxirane.  相似文献   

7.
Bernat BA  Armstrong RN 《Biochemistry》2001,40(42):12712-12718
The fosfomycin resistance protein, FosA, catalyzes the Mn(2+)-dependent addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering the antibiotic inactive. The enzyme is a homodimer of 16 kDa subunits, each of which contains a single mononuclear metal site. Stopped-flow absorbance/fluorescence spectrometry provides evidence suggesting a complex kinetic mechanism for the acquisition of Mn(2+) by apoFosA. The binding of Mn(H(2)O)(6)(2+) to apoFosA alters the UV absorption and intrinsic fluorescence characteristics of the protein sufficiently to provide sensitive spectroscopic probes of metal binding. The acquisition of metal is shown to be a multistep process involving rapid preequilibrium formation of an initial complex with release of approximately two protons (k(obsd) > or = 800 s(-1)). The initial complex either rapidly dissociates or forms an intermediate coordination complex (k > 300 s(-1)) with rapid isomerization (k > or = 20 s(-1)) to a set of tight protein-metal complexes. The observed bimolecular rate constant for formation of the intermediate coordination complex is 3 x 10(5) M(-1) s(-1). The release of Mn(2+) from the protein is slow (k approximately 10(-2) s(-1)). The kinetic results suggest a more complex chelate effect than is typically observed for metal binding to simple multidentate ligands. Although the addition of the substrate, fosfomycin, has no appreciable effect on the association kinetics of enzyme and metal, it significantly decreases the dissociation rate, suggesting that the substrate interacts directly with the metal center.  相似文献   

8.
Dihydrofolate reductase (DHFR) is an intracellular target enzyme for folate antagonist drugs, including methotrexate. In order to compare the binding of methotrexate to human DHFR in solution with that observed in the crystalline state, NMR spectroscopy has been used to determine the conformation of the drug bound to human DHFR in solution. In agreement with what has been observed in the crystalline state, NOE's identified protein and methotrexate protons indicate that methotrexate binds in a non-productive orientation. In contrast to what has been reported for E. coli DHFR in solution, only one bound conformation of methotrexate is observed.  相似文献   

9.
The genomically encoded fosfomycin resistance protein from Pseudomonas aeruginosa (FosA(PA)) utilizes Mn(II) and K(+) to catalyze the addition of glutathione (GSH) to C1 of the antibiotic rendering it inactive. Although this protein has been structurally and kinetically characterized with respect to the substrate, fosfomycin, questions remain regarding how the enzyme binds the thiol substrate, GSH. Computational studies have revealed a potential GSH binding site in FosA(PA) that involves six electrostatic or hydrogen-bonding interactions with protein side-chains as well as six additional residues that contribute van der Waals interactions. A strategically placed tyrosine residue, Y39, appears to be involved in the ionization of GSH during catalysis. The Y39F mutant exhibits a 13-fold reduction of catalytic activity (k(cat)=14+/-2s(-1)), suggesting a role in the ionization of GSH. Mutation of five other residues (W34, Q36, S50, K90, and R93) implicated in ionic of hydrogen-bonding interactions resulted in enzymes with reduced catalytic efficiency, affinity for GSH, or both. The mutant enzymes were also found to be less effective resistant proteins in the biological context of Escherichia coli. The more conservative W34H mutant has native-like catalytic efficiency suggesting that the imidazole NH group can replace the indole group of W34 that is important for GSH binding. In the absence of co-crystal structural data with the thiol substrate, these results provide important insights into the role of GSH in catalysis.  相似文献   

10.
The induced-fit mechanism in Enterobacter cloacae MurA has been investigated by kinetic studies and X-ray crystallography. The antibiotic fosfomycin, an irreversible inhibitor of MurA, induced a structural change in UDP-N-acetylglucosamine (UDPGlcNAc)-liganded enzyme with a time dependence similar to that observed for the inactivation progress. The mechanism of action of fosfomycin on MurA appeared to be of the bimolecular type, the overall rate constants of inactivation and structural change being = 104 M(-1) s(-1) and = 85 M(-1) s(-1), respectively. Fosfomycin as well as the second MurA substrate, phosphoenolpyruvate (PEP), are known to interact with the side chain of Cys115. Like wild-type MurA, the catalytically inactive single-site mutant protein Cys115Ser structurally interacted with UDPGlcNAc in a rapidly reversible reaction. However, in contrast to wild-type enzyme, binding of PEP to mutant protein induced a rate-limited, biphasic structural change. Fosfomycin did not affect the structure of the mutant protein. The crystal structure of unliganded Cys115Ser MurA at 1.9 A resolution revealed that the overall conformation of the loop comprising residues 112-121 is not influenced by the mutation. However, other than Cys115 in wild-type MurA, Ser115 exhibits two distinct side-chain conformations. A detailed view on the loop revealed the existence of an elaborate hydrogen-bonding network mainly supplied by water molecules, presumably stabilizing its conformation in the unliganded state. The comparison between the known crystal structures of MurA, together with the kinetic data obtained, suggest intermediate conformational states in the MurA reaction, in which the loop undergoes multiple structural changes upon ligand binding.  相似文献   

11.
Nonprotein amino acid furanomycin was found to bind with Escherichia coli isoleucyl-tRNA synthetase (IleRS) almost as tightly as the substrate L-isoleucine. The conformation of furanomycin bound to the enzyme was determined by NMR analyses including the transferred nuclear Overhauser effect method. The conformation of IleRS-bound furanomycin was similar to that of L-isoleucine, although the chemical structure of furanomycin is unlike that of L-isoleucine. By E. coli IleRS, E. coli tRNAIle was charged with furanomycin as efficiently as with L-isoleucine. Furthermore, furanomycyl-tRNAIle was bound to polypeptide chain elongation factor Tu as tightly as isoleucyl-tRNAIle. Furanomycin was found to be incorporated into beta-lactamase precursor by in vitro protein biosynthesis. A newly designed amino acid will probably be incorporated into proteins, provided that the new amino acid takes a similar conformation as a protein-constituting amino acid in the active site of an aminoacyl-tRNA synthetase.  相似文献   

12.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) with the formation of DAHP. The native and the selenomethionine-substituted forms of the phenylalanine-regulated isozyme [DAHPS(Phe)] from Escherichia coli were crystallized in complex with PEP and a metal cofactor, Mn(2+), but the crystals displayed disorder in their unit cells, preventing satisfactory refinement. However, the crystal structure of the E24Q mutant form of DAHPS(Phe) in complex with PEP and Mn(2+) has been determined at 1.75 A resolution. Unlike the tetrameric wild-type enzyme, the E24Q enzyme is dimeric in solution, as a result of the mutational perturbation of four intersubunit salt bridges that are critical for tetramer formation. The protein chain conformation and subunit arrangement in the crystals of E24Q and wild-type DAHPS are very similar. However, the interaction of Mn(2+) and PEP in the enzymatically active E24Q mutant complex differs from the Pb(2+)-PEP and Mn(2+)-phosphoglycolate interactions in two enzymatically inactive wild-type complexes whose structures have been determined previously. The geometry of PEP bound in the active site of the E24Q enzyme deviates from planarity due to a 30 degrees twist of the carboxylate plane relative to the enol plane. In addition, seven water molecules are within contact distance of PEP, two of which are close enough to its C2 atom to serve as the nucleophile required in the reaction.  相似文献   

13.
The crystal structure of porcine heart mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH) complexed with Mn2+ and isocitrate was solved to a resolution of 1.85 A. The enzyme was expressed in Escherichia coli, purified as a fusion protein with maltose binding protein, and cleaved with thrombin to yield homogeneous enzyme. The structure was determined by multiwavelength anomalous diffraction phasing using selenium substitution in the form of selenomethionine as the anomalous scatterer. The porcine NADP+-IDH enzyme is structurally compared with the previously solved structures of IDH from E. coli and Bacillus subtilis that share 16 and 17% identity, respectively, with the mammalian enzyme. The porcine enzyme has a protein fold similar to the bacterial IDH structures with each monomer folding into two domains. However, considerable differences exist between the bacterial and mammalian forms of IDH in regions connecting core secondary structure. Based on the alignment of sequence and structure among the porcine, E. coli, and B. subtilis IDH, a putative phosphorylation site has been identified for the mammalian enzyme. The active site, including the bound Mn2+-isocitrate complex, is highly ordered and, therefore, mechanistically informative. The consensus IDH mechanism predicts that the Mn2+-bound hydroxyl of isocitrate is deprotonated prior to its NADP+-dependent oxidation. The present crystal structure has an active site water that is well positioned to accept the proton and ultimately transfer the proton to solvent through an additional bound water.  相似文献   

14.
A K Samland  N Amrhein  P Macheroux 《Biochemistry》1999,38(40):13162-13169
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the first committed step in the biosynthesis of the bacterial cell wall component peptidoglycan. The enzyme is the target of the antibiotic fosfomycin. A lysine residue (K22), strictly conserved in MurAs and the structurally and mechanistically related 5-enolpyruvylshikimate 3-phosphate synthases (EPSPS), is located near the active center of the enzyme. This residue is thought to be involved directly in the binding of the substrate phosphoenolpyruvate (PEP) and also to participate in the conformational change leading to the formation of the catalytically competent enzyme complex. Using site-directed mutagenesis, we have replaced this lysine with arginine (K22R), valine (K22V), and glutamate (K22E). These mutant proteins were expressed, purified, and characterized in comparison to wild-type MurA and a previously described inactive C115S mutant protein. It was found that all three K22 mutant proteins had less than 0.5% of the wild-type activity. Using isothermal titration calorimetry, it could be shown that the binding parameters for the UDP-sugar nucleotide substrate are not affected by the mutations, except for the K22E mutant protein. Similarly, binding of PEP was found to be unaffected in the K22 mutant proteins as demonstrated by tryptophan fluorescence quench titrations. On the other hand, the level of formation of a covalent adduct with either PEP or fosfomycin with the thiol group of cysteine 115 was diminished. The propensity to form an adduct with PEP decreased in the following order: wild type > K22R > K22V > K22E. A comparable effect was found on the formation of the inhibitory covalent adduct of MurA and the antibiotic fosfomycin. These results are discussed in terms of an involvement of lysine 22 in a conformational change of MurA.  相似文献   

15.
We determined the sequence and genetic organization of plasmid pIP823, which contains the dfrD gene; dfrD confers high-level trimethoprim resistance to Listeria monocytogenes BM4293 by synthesis of dihydrofolate reductase type S2. pIP823 possessed all the features of the pUB110/pC194 plasmid family, whose members replicate by the rolling-circle mechanism. The rep gene encoded a protein identical to RepU, the protein required for initiation of the replication of plasmids pTB913 from a thermophilic Bacillus sp. and pUB110 from Staphylococcus aureus. The mob gene encoded a protein with a high degree of amino acid identity with the Mob proteins involved in conjugative mobilization and interplasmidic recombination of pTB913 and pUB110. The host range of pIP823 was broad and included L. monocytogenes, Enterococcus faecalis, S. aureus, Bacillus subtilis, and Escherichia coli. In all these species, pIP823 replicated by generating single-stranded DNA and was stable. Conjugative mobilization of pIP823 was obtained by self-transferable plasmids between L. monocytogenes and E. faecalis, between L. monocytogenes and E. coli, and between strains of E. coli, and by the streptococcal conjugative transposon Tn1545 from L. monocytogenes to E. faecalis, and from L. monocytogenes and E. faecalis to E. coli. These data indicate that the gene flux observed in nature from gram-positive to gram-negative bacteria can occur by conjugative mobilization. Our results suggest that dissemination of trimethoprim resistance in Listeria spp. and acquisition of other antibiotic resistance determinants in this species can be anticipated.  相似文献   

16.
Microsomal prostaglandin E synthase type 1 (mPGES-1) converts prostaglandin endoperoxides, generated from arachidonic acid by cyclooxygenases, into prostaglandin E2. This enzyme belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family of integral membrane proteins, and because of its link to inflammatory conditions and preferential coupling to cyclooxygenase 2, it has received considerable attention as a drug target. Based on the high resolution crystal structure of human leukotriene C4 synthase, a model of mPGES-1 has been constructed in which the tripeptide co-substrate glutathione is bound in a horseshoe-shaped conformation with its thiol group positioned in close proximity to Arg-126. Mutation of Arg-126 into an Ala or Gln strongly reduces the enzyme's prostaglandin E synthase activity (85-95%), whereas mutation of a neighboring Arg-122 does not have any significant effect. Interestingly, R126A and R126Q mPGES-1 exhibit a novel, glutathione-dependent, reductase activity, which allows conversion of prostaglandin H2 into prostaglandin F2alpha. Our data show that Arg-126 is a catalytic residue in mPGES-1 and suggest that MAPEG enzymes share significant structural components of their active sites.  相似文献   

17.
R. A. Anthony  S. W. Liebman 《Genetics》1995,140(4):1247-1258
Three small-subunit ribosomal proteins shown to influence translational accuracy in Saccharomyces cerevisiae are conserved in structure and function with their procaryotic counterparts. One of these, encoded by RPS28A and RPS28B (RPS28), is comparable to bacterial S12. The others, encoded by sup44 (RPS4) or, sup46 and YS11A (RPS13), are homologues of procaryotic S5 and S4, respectively. In Escherichia coli, certain alterations in S12 cause hyperaccurate translation or antibiotic resistance that can be counteracted by other changes in S5 or S4 that reduce translational accuracy. Using site-directed and random mutagenesis, we show that different changes in RPS28 can have diametrical influences on translational accuracy or antibiotic sensitivity in yeast. Certain substitutions in the amino-terminal portion of the protein, which is diverged from the procaryotic homologues, cause varying levels of nonsense suppression or antibiotic sensitivity. Other alterations, found in the more conserved carboxyl-terminal portion, counteract SUP44- or SUP46-associated antibiotic sensitivity, mimicking E. coli results. Although mutations in these different parts of RPS28 have opposite affects on translational accuracy or antibiotic sensitivity, additive phenotypes can be observed when opposing mutations are combined in the same protein.  相似文献   

18.
Discrepancies between resistance in vitro and therapeutic efficacy in vivo are generally attributed to failure of laboratory susceptibility tests to reflect an antibiotic's pharmacokinetic or pharmacodynamic properties. We show here that this phenomenon can result from differential in vitro-in vivo expression of bacterial determinants of antibiotic susceptibility. We found that an in vivo-induced virulence factor, Hpt, also mediates uptake of fosfomycin in Listeria monocytogenes. These bacteria therefore seem resistant to fosfomycin in vitro, although they are in fact susceptible to the antibiotic during infection.  相似文献   

19.
Thymidylate synthase (TS) is a long-standing target for anticancer drugs and is of interest for its rich mechanistic features. The enzyme catalyzes the conversion of dUMP to dTMP using the co-enzyme methylenetetrahydrofolate, and is perhaps the best studied of enzymes that catalyze carbon-carbon bond formation. Arg 126 is found in all TSs but forms only 1 of 13 hydrogen bonds to dUMP during catalysis, and just one of seven to the phosphate group alone. Despite this, when Arg 126 of TS from Escherichia coli was changed to glutamate (R126E), the resulting protein had kcat reduced 2000-fold and Km reduced 600-fold. The crystal structure of R126E was determined under two conditions--in the absence of bound ligand (2.4 A resolution), and with dUMP and the antifolate CB3717 (2.2 A resolution). The first crystals, which did not contain dUMP despite its presence in the crystallization drop, displayed Glu 126 in a position to sterically and electrostatically interfere with binding of the dUMP phosphate. The second crystals contained both dUMP and CB3717 in the active site, but Glu 126 formed three hydrogen bonds to nearby residues (two through water) and was in a position that partially overlapped with the normal phosphate binding site, resulting in a approximately 1 A shift in the phosphate group. Interestingly, the protein displayed the typical ligand-induced conformational change, and the covalent bond to Cys 146 was present in one of the protein's two active sites.  相似文献   

20.
Dehydroquinate synthase has been purified 9000-fold from Escherichia coli K-12 (strain MM294). The synthase is encoded by the aroB gene, which is carried by plasmid pLC29-47 from the Carbon-Clarke library. Construction of an appropriate host bearing pLC29-47 results in a strain that produces 20 times more enzyme than strain MM294. Subcloning of the aroB gene behind a tac promoter results in E. coli transformants that produce 1000 times more enzyme than MM294: the synthase constitutes 5% of the soluble protein of the cell. A laborious isolation from 50 g of wild-type E. coli cells yields 80 micrograms of impure enzyme, whereas 50 g of cells containing the subcloned gene yields 150 mg of homogeneous enzyme in a two-column purification. Dehydroquinate synthase is a monomeric protein of Mr 40 000-44 000. The chromosomal enzyme from E. coli K-12, the cloned enzyme encoded by the plasmid pLC29-47, and the subcloned inducible enzyme encoded by pJB14 all comigrate on polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号