首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In peaty loam soils, aldicarb or oxamyl mixed with the top 15 cm of the soil in spring before sugar beet seeds were sown, minimised invasion of the roots by larvae of the beet cyst-nematode, Heterodera schachtii, so preventing injury to the seedlings, and greatly increased sugar yields in heavily infested soil. Small amounts of both compounds were often as effective as larger amounts. Nematode increase on sugar beet roots was slow. Aldicarb or oxamyl lessened nematode increase in four years out of five. Fumigating predetermined row positions with dichloropropene mixtures (D-D, Telone) or incorporating aldicarb or methomyl shallowly in soil, later occupied by the roots of sugar beet seedlings, did not control the nematode, although sugar yields were sometimes increased.  相似文献   

2.
Soil from twelve of twenty-six sites on ten nurseries growing ornamental trees and shrubs contained viruliferous nematodes, transmitting arabis mosaic virus (AMV) at eight sites, tomato black ring virus at three and tobacco rattle virus at one site. Tobacco necrosis virus was detected at two sites. Xiphinema spp. were found at nine sites, Longidorus spp. at sixteen and Trichodorus spp. at thirteen sites. Thirty-one ornamental species of Rosaceae were tested for virus infections and AMV was found in Spiraea bumalda, Spiraea japonica alba and Kerria japonica.  相似文献   

3.
Thirty-three gal D–D or chloropicrin/acre (371 l/ha) injected during winter into well-drained, sandy soils controlled Longidorus attenuatus, Trichodorus spp. and other migratory root-parasitic nematodes and resulted in greatly increased yields of sugar beet for at least 3 years; 2 years of bare fallow was less effective than soil fumigation. Trichodorus spp. multiplied more on sugar beet than on barley, whereas L. attenuatus multiplied more on barley and clover than on sugar beet.  相似文献   

4.
In fifteen experiments on light land infested with plant-parasitic nematodes, fumigating the soil during the previous winter with D-D increased the average yield of sugar-beet roots from 25 to 36 t/ha; this was more than that obtained with various forms of nitrogenous fertilizers used in amounts up to 250 kg N/ha. Application of 85 kg N/ha increased yields on fumigated plots by 7 t/ha, and there was little benefit from giving more. Fumigation killed 65 % of the Pratylenchus spp., 80% of the Trichodorus spp. and 90% of the Tylenchorhynchus spp. in the top 5 cm of the soil and, at 15–20 cm deep, 90, 93 and 95% of these three genera. The increased yield from fumigant at different sites was not correlated with the initial populations of nematodes. The average increase in yield from fumigation was only poorly correlated with rainfall during May. The increases in nematode populations between April and August depended on rainfall, and were 0positively correlated both with the accumulated rainfall for the 10 weeks before sampling the soil in August and with the rainfall during the week previous to sampling. Fumigation not only improved the health of roots, and so enabled them to use nitrogen more efficiently, but also increased the amount of available nitrogen in the soil and decreased the amount lost by leaching. Injected anhydrous ammonia did not affect the populations of nematodes.  相似文献   

5.
Seeds or fruits of 10 weed species were collected in each of 3 years and mixed with the top 7·5 cm of sterilised soil which was confined in cylinders sunk in the ground outdoors and cultivated three times yearly. The numbers of seedlings emerging were recorded for 5 yr and the numbers of viable seeds remaining then determined. Few, if any, seedlings of Atriplex, Chenopodium or Polygonum spp. emerged in the autumn of sowing; the main emergence was consistently in March–May (A. hastata, A. patula), April–May (P. lapathifolium, P. persicaria), April–June (C. polyspermum), May–June (C. rubrum) or June–August (C. hybridum). When sown before November, some seedlings of Rumex crispus, R. obtusifolius and R. sanguineus appeared immediately. Most emerged in April in subsequent years. Seedling emergence was usually greatest in the first year; thereafter, with all species, seedling numbers decreased approximately exponentially from year to year. The mean numbers of seeds found to be viable after 5 yr ranged from 2·5% (R. sanguineus) to 16·6% (C. rubrum) of those sown.  相似文献   

6.
Smaller amounts of D–D (6–12 gal/acre) (68–135 1/ha) or ethylene dibromide (9 gal/acre) (100 1/ha) than are customarily used to disinfest field soils killed many root-parasitic nematodes (Trichodorus, Pratylenchus, Tylenchorhynchus and Longidorus attenuatus) when injected 6–8 in (15–20 cm) deep during early autumn in rows 10 in (25 cm) apart in well-drained sandy soils. They also increased the yield of sugar beet grown in fields infested with Trichodorus or Longidorus attenuatus, without affecting sugar percentage or juice purity of the roots, and in some places increased the yield of barley grown after the beet. D–D was much less effective when injected 8–12 in deep during late autumn or winter. Increasing nitrogen dressings to the seedbed from 1·5 to 3 cwt/acre (188 to 376 kg/ha) increased sugar beet yield in one field, decreased it in another and decreased juice purity in both. In two other experiments extra nitrogen did not affect sugar beet yield. Even smaller amounts of the nematicides ‘placed’ in the rows, before or after sowing sugar beet in them, killed many of the nematodes and also increased sugar yield. Phytotoxic nematicides can be placed in the rows during autumn, winter or spring but placement is simpler during spring, when the treated rows are indicated by the position of the marks of the tractor wheels left when the nematicide was applied. When applied during autumn or winter, the rows need to be indicated by drilling wheat or grass.  相似文献   

7.
Preplant soil fumigation experiments were conducted to control the citrus nematode, Tylenchulus semipenetrans. Generally, D-D (1,3-dichloropropene, 1,2-dichloroptopane and related chlorinated C3-hydrocarbons), Telone (1,3-dichloropropene and related chlorinated C3-hydrocarbons), Telone PBC (80% 1,3-dichloropropene, 15% chloropicrin, 5% propargyl bromide), and EDB (ethylene dibromide) controlled T. semipenetrans effectively for 4 years. The trials involved four scion varieties, two rootstock varieties and three soil types. Tree growth and yield were increased with application of D-D at 374 or 561 liters/ha (40 or 60 gal/acre) or Telone at 299 or 449 liters/ha (32 or 48 gal/acre) in broadcast and strip treatments.  相似文献   

8.
Longidorus attenuatus produces galls at the tips of roots of field crops, including sugar beet, growing in alkaline, sandy soils in eastern England. L. elongatus produces similar, but often larger, galls on the roots of sugar beet and other crops in sandy soils in the W. Midlands and in Fen peats. Trichodorus spp. cause ‘stubby root’ of sugar beet and can feed on many field crops. Seven species of Trichodorus were found in sandy soils in eastern England. L. attenuatus, L. elongatus and Trichodorus spp. aggregate around roots and stunt sugar beet and other crop plants. L. attenuatus is commoner below plough depth than in the topsoil, whereas T. cylindricus, T. pachy-dermus and T. anemones are more abundant in the topsoil. These nematodes cause some forms of ‘Docking disorder’.  相似文献   

9.
‘Giant race’ stem nematode (Ditylenchus dipsaci) was well controlled in spring beans (Vicia faba) by up to 5 kg aldicarb or carbofuran ha-1 applied to the seed furrows at sowing. Carbofuran was rather more effective in the clay loam soil used than was aldicarb. The best treatments almost eliminated injury to the stems and nematode infestation in the harvested seed. Similarly applied, oxamyl and fenamiphos were less effective and phorate, dimethoate and disulfoton were ineffective. Applying part of the dosage of an effective nematicide to the seed furrows and part along the plant rows mid-season was no more effective and was sometimes less effective than applying the whole dose to the seed furrows. Treating the plant rows mid-season with aldicarb or phoxim sometimes enhanced control but thiabendazole applied thus did not. Seed furrow applications of aldicarb or carbofuran were much less effective in controlling the nematodes in winter beans and seed dressings were less effective than seed furrow treatments. In one experiment, in plots in which aldicarb or oxamyl had been applied to the seed furrows, phoxim or thiabendazole applied over the rows of plants, enhanced nematode control. In two other experiments, thiabendazole was ineffective when applied in this way or when applied as a combined soil and plant treatment.  相似文献   

10.
Longidorus elongatus attacks sugar beet on light sandy soils in the West Midlands. Severely damaged plants may die or recover, producing fanged roots. Up to 335 L. elongatus/200 g of soil were found around attacked seedling plants and were often visible to the unaided eye on the roots of freshly lifted plants. Five experiments were made and regressions computed of yield of beet, total numbers of plants and numbers of normal and fanged beet on L. elongatus numbers. Between 24% and 50% of roots per 100 L. elongatus/ 200 g were killed or became fanged. Corresponding figures for loss of plant were between 7.5% and 33%. Estimated loss of yield varied between 0.8 and 7.3 tons (2.0–18.3 t/ha)/acre/100 L. elongatus/200 g, the former where the potential yield was high and the latter where poor growing conditions hindered recovery. Large numbers of Trichodorus occurred in two trial sites and there is some evidence of competition between the two genera. Significant negative regressions for Trichodorus spp. were obtained in one trial suggesting a loss of 12% total and 17% normal roots per 100 Trichodorus spp./200 g.  相似文献   

11.
Date palm, Phoenix dactylifera L., is dioecious and can be artificially pollinated by man, and one-third of all the dates of the world are grown in Iraq. In Egypt, there are about 12?million date palm trees grown in 99,867?feddans (fed.?=?4200?m2). Productivity is 1352,954?million?tons with yield 111.7?kg/tree. Plant parasitic nematodes associated with date palm are Criconemoides spp., Helicotylenchus spp., Hemicriconemoides spp., Hemicycliophora spp., Hoplolaimus spp., Meloidogyne incognita, Meloidogyne arenaria, Meloidogyne javanica, Pratylenchus brachyurus, Pratylenchus jordanensis, Pratylenchus coffeae, Pratylenchus neglectus, Pratylenchus thornei, Trichodorus spp., Tylenchorhynchus goffarti, Tylenchorhynchus latus and Xiphinema spp.; Meloidogyne incognita-infected roots of susceptible cultivar favoured giant cell and galls formation. Date palm roots infected with Pratylenchus penetrans showed puncture of epidermal cells and disarrangement of cortical cells with large empty abnormal cavities. As control measures, it is advised to; 1 – plant immune or resistant cultivars against pathogenic nematodes, 2 – use oil cakes or poultry manure as organic amendments and a nematicide, carbofuran.These were tested and found effective in the control of Helicotylenchus multicinctus and P. penetrans, 3 – treat nematode-infested date palm seedlings with hot water at a suitable temperature for a given period before transplanting to open field, 4 – plant nematode -free date palm seedlings, 5 – soil solarisation and tillage before planting, 6 – weed control, 7 – intercrop with nematode-resistant horticultural crops and 8 – induce resistance in susceptible date palm cultivars against root knot nematode.  相似文献   

12.
In peaty loam soil in Cambridgeshire, 5.2 or 10.3 kg aldicarb/ha incorporated in the top-soil before potatoes were planted controlled potato cystnematode (Heterodera rostochiensis Woll.) better than 384, 769 or 1153 kg D-D/ha injected 15 cm deep into the top-soil in the preceding autumn. 10.3 kg aldicarb/ha applied in 1968 and 1969 permitted King Edward potatoes (susceptible to H. rostochiensis) to grow well in infested soil and prevented multiplication of pathotypes of H. rostochiensis on Maris Piper potatoes (resistant to H. rostochiensis pathotype A). Although large amounts of D-D applied in 1968 and 1969 increased the yield of King Edward potatoes in both years they did not control potato cyst-nematode in the second year.  相似文献   

13.
In soil inoculated with Pythium ultimum or Pythium irregulare, seed treatment with either Apron 70 (=1 g metalaxyl and 1 g captan/kg seed) or thiram gave control of pre-emergence damping-off of Brussels sprout and cabbage seedlings. On cauliflower, Apron 70 was significantly more effective than thiram. No post-emergence damping-off occurred in either of these crops or in oil-seed rape following seed treatment with Apron 70 whilst post-emergence losses from untreated seed ranged from 10·2–19·4% and from thiram treated seed from 5·7-7·4%. Apron 70 gave complete control of Peronospora parasitica on cauliflower inoculated 10 days after sowing; thiram was ineffective. Following seed treatment with Apron 70, metalaxyl was detected in the cotyledons, true leaves and roots of cabbage seedlings up to 4 wk from sowing.  相似文献   

14.
Large amounts of dazomet (329, 439 kg/ha) applied to potato ridge soil in spring, before potatoes were planted, controlled potato cyst-nematode (Heterodera rostochiensis) in sandy loam and silt loam more effectively than large amounts of D-D (359, 448 kg/ha). In heavily infested sandy loam, 329 kg dazomet/ha or 857 kg methyl bromide/ha applied in spring 1969 or 439 kg dazomet/ha applied in autumn 1968, greatly decreased the number of larvae able to invade potato roots, so Majestic potatoes grew and yielded well without increasing the number of nematodes left in the soil after harvest. Large amounts of D-D or Telone applied to the topsoil in autumn or to the ridges in spring were less effective in controlling potato cyst-nematode or increasing potato yields. Applied in spring 1969 to silt loam ridges, 439 kg dazomet/ha had more effect than 448 kg D-D/ha on potato cyst-nematode and on the increase in yield of Majestic potato. The yield of Maris Piper potatoes (resistant to H. rostochiensis pathotype A) in infested silt loam was increased greatly by D-D, as much by 112 as by 224 or 448 kg/ha.  相似文献   

15.
The effects of aldicarb and benomyl on plant-parasitic nematodes, vesicular arbuscular mycorrhiza and the growth of forage maize were measured in 1980—1982 in two field experiments at Woburn, Bedfordshire and in a pot experiment using loamy sand soil from the field site. The most numerous migratory nematode, Tylenchorhynchus dubius increased three to four-fold during each season in untreated soil and was effectively controlled by aldicarb. Pratylenchus species were fewer but equally well controlled. The cereal cyst-nematode (Heterodera avenae), a serious maize pathogen in Northern France, was relatively scarce in untreated roots and was further decreased by aldicarb treatment; post-harvest H. avenae egg numbers were not affected by treatments; they declined equally because maize is such a poor host. Significant yield benefits (up to 37%) followed aldicarb treatment and were ascribed to nematode control in the absence of attribution to insect or other pests. Benomyl did not increase yields nor did it significantly affect the incidence of mycorrhiza. The results confirm that considerable losses of forage maize can be caused by nematodes in light soil and that aldicarb is an effective nematicide even at the rate of 1·7 kg a.i./ha.  相似文献   

16.
Applied to potato ridge soil in spring, before potatoes were planted, small amounts of aldicarb (10-3 kg/ha or less) controlled potato cyst-nematodes (Heterodera rostochiensis Woll.) better than large amounts of dazomet (110–466 kg/ha) or D-D (102–439 kg/ha). Applied in spring 1968 and 1969 to heavily infested sandy clay soil 466 kg dazomet/ha allowed Majestic potatoes to grow and yield well in both years without increasing the number of nematodes in the soil after harvest, but in peaty loam dazomet was toxic to potato plants and, when applied in autumn, killed fewer nematodes. D-D in potato ridges in spring controlled nematodes less well than dazomet or aldicarb, but 896 kg D-D/ha injected in sandy clay soil in autumn increased potato yield the following year without increasing the number of nematodes after harvest.  相似文献   

17.
The liquid fumigants dichloropropane-dichloropropene mixture (D-D) or dichloropropenes (Telone), when applied at 64 or 43 1/ha respectively in bands 15–20 cm below the lines of the crop rows before sugar beet was sown on land with a history of Docking disorder, often led to appreciable increases in sugar yield; this occurred even in seasons that were not conducive to the development of the disorder, particularly in East Anglia. Treatment often increased yield economically but the crop response could not be forecast at the time of fumigant application. The effect of fumigation in Lincolnshire and Yorkshire was more variable, sometimes being favourable and occasionally unfavourable, whilst the same treatment in Nottinghamshire seldom increased and sometimes decreased the yield of sugar. Yields of barley grain in the years following the sugar-beet crops in Yorkshire and Nottinghamshire were not increased by the band application of nematicide but were sometimes increased by it when applied overall.  相似文献   

18.
The effects of 10 fungicides on the growth of Colletotrichum coccodes in agar culture and on the germination of conidia was investigated. In field experiments in 1990 and 1991 the extent to which treating black dot-affected potato seed tubers with fungicides affected the development of the disease on stem bases, roots and tubers was assessed. Black dot was also assessed on plants from field trials in 1990 which were designed to investigate the efficacy of the soil sterilant 1,3-dichloropropene (Telone) and two nematicides, aldicarb (Temik) and ethoprophos (Mocap). Prochloraz and fenpiclonil were the most effective fungicides in decreasing the size of C. coccodes colonies on agar. Imazalil, propiconazole and dichlorophen were also effective, but at higher concentrations, whereas tolclofos-methyl, thiabendazole and benomyl were only moderately effective. Resistant sectors developed from inhibited colonies on agar containing fenpiclonil and tolclofos-methyl. Conidial germination was prevented at 1 mg/litre fenpiclonil and 5 mg/ litre dichlorophen; imazalil, benomyl and thiabendazole were also moderately effective. Fenpiclonil and propiconazole seed tuber treatments consistently decreased black dot infection on roots, stem bases and daughter tubers early in the season, but only fenpiclonil decreased disease on tubers at harvest in October. Propiconazole also delayed emergence and decreased stem numbers. Soil treatment with 1,3-dichloropropene, aldicarb or ethoprophos had no effect on black dot but Rhizoctonia solani tuber infection and black scurf were increased.  相似文献   

19.
Seed lots of winter wheat and rye, naturally infested with Microdochium nivale and Fusarium spp., were treated with an isolate of Pseudomonas, which was recovered from roots of Brassica napus. Seeds were treated with bacterial fermentate and dried before sowing or they were directly sprayed in the furrow-opener at the moment of sowing. Besides field experiments, parallel climate chamber bioassays were performed to assess the effect of bacterial treatment on snow mould caused by seed-borne M. nivale and Fusarium spp. The biocontrol effect was assessed by plant density counts and by measuring yield. Significant biocontrol activity, measured by plant density counts, was detected both in field and climate chamber experiments sown with wheat. Biocontrol effect after spray application at sowing was less pronounced, although a slight increase in plant density was observed. The cell concentration required to obtain adequate biocontrol effect was 109 CFU per ml for the dose used. The bacterial isolate was identified by 16S rDNA sequencing and biochemical tests as a Pseudomonas brassicacearum strain.  相似文献   

20.
The control of potato cyst nematode (PCN) by less than approved amounts of nematicide combined with partially resistant potato clones was studied in a series of field experiments. On a site heavily infested with Globodera pallida only the most resistant clone (12380ac2) decreased the population density in untreated soil. With aldicarb at its full approved rate (3·36 kg ha-1) numbers of PCN were decreased under all the genotypes, including the non-resistant Maris Piper. Aldicarb at 1·68 kg ha-1significantly decreased populations on all clones except 12380ac2. Aldicarb at 0·84 kg ha-1still significantly decreased population densities and multiplication rates of G. pallida on two clones with intermediate resistance (12243acl and 11233ab22). At two G. rostochiensis sites with light infestations nematode multiplication rates were greater and the control given by aldicarb and partially resistant genotypes of potato was not as great as that at the site with G. pallida. Tuber yields were not increased by the application of aldicarb at the G. rostochiensis infested sites. However, at the site heavily infested with G. pallida the yield of the most intolerant genotype (12380ac2) was increased seven-fold by the full rate of aldicarb (3·36 kg ha-1) and four-fold by the quarter rate (0·84 kg ha-1)-Yield of the most tolerant genotype (12243acl) was unaffected by the application of aldicarb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号