首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this essay crucial problems of the origin of cancer and the development of malignancy are discussed. The problem of precancer and three ways leading to malignancy are considered: induction of tumor precursors, accumulation of genetic traits common for tumor growth, and the role of inflammation in tumor induction. The nature of viral oncogenes and modes of their action are described in the context of their origin as a component of the viral genome. Oncogenes of RNA-containing viruses and DNA-containing tumorigenic viruses are described together with cellular protooncogenes, which are progenitors of RNA-containing viral oncogenes. Hematological malignancies are described as an intermediate form between simple tumors induced by a single oncogene and more complicated epithelial tumors. The roles of tumor suppressor genes and the interaction of several oncogenes in the formation of carcinomas and also the role of progression in tumor evolution are discussed.  相似文献   

2.
3.
Autophagy and tumorigenesis   总被引:1,自引:0,他引:1  
Nan Chen 《FEBS letters》2010,584(7):1427-674
Autophagy, or cellular self-digestion, is activated in cancer cells in response to multiple stresses and has been demonstrated to promote tumor cell survival and drug resistance. Nonetheless, genetic evidence supports that autophagy functions as a tumor suppressor mechanism. Hence, the precise role of autophagy during cancer progression and treatment is both tissue and context dependent. Here, we discuss our current understanding of the biological functions of autophagy during cancer development, overview how autophagy is regulated by cancer-associated signaling pathways, and review how autophagy inhibition is being exploited to improve clinical outcomes.  相似文献   

4.
5.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

6.
Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer “gene-chameleons”, which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP+-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically “the drivers” of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and “paradoxical” effects of different anticancer drugs depending on the cellular genetic context/signaling network are discussed.  相似文献   

7.
Tumors arise through waves of genetic alterations and clonal expansion that allow tumor cells to acquire cancer hallmarks, such as genome instability and immune evasion. Recent genomic analyses showed that the vast majority of cancer driver genes are mutated in a tissue-dependent manner, that is, are altered in some cancers but not others. Often the tumor type also affects the likelihood of therapy response. What is the origin of tissue specificity in cancer? Recent studies suggest that both cell-intrinsic and cell-extrinsic factors play a role. On one hand, cell type–specific wiring of the cell signaling network determines the outcome of cancer driver gene mutations. On the other hand, the tumor cells’ exposure to tissue-specific microenvironments (e.g. immune cells) also contributes to shape the tissue specificity of driver genes and of therapy response. In the future, a more complete understanding of tissue specificity in cancer may inform methods to better predict and improve therapeutic outcomes.  相似文献   

8.
The triple-negative breast cancer (TNBC) that comprises approximately 10%–20% of breast cancers is an aggressive subtype lacking effective therapeutics. Among various signaling pathways, mTORC1 and purinergic signals have emerged as potentially fruitful targets for clinical therapy of TNBC. Unfortunately, drugs targeting these signaling pathways do not successfully inhibit the progression of TNBC, partially due to the fact that these signaling pathways are essential for the function of all types of cells. In this study, we report that TRPML1 is specifically upregulated in TNBCs and that its genetic downregulation and pharmacological inhibition suppress the growth of TNBC. Mechanistically, we demonstrate that TRPML1 regulates TNBC development, at least partially, through controlling mTORC1 activity and the release of lysosomal ATP. Because TRPML1 is specifically activated by cellular stresses found in tumor microenvironments, antagonists of TRPML1 could represent anticancer drugs with enhanced specificity and potency. Our findings are expected to have a major impact on drug targeting of TNBCs.  相似文献   

9.
In recent decades we have been given insight into the process that transforms a normal cell into a malignant cancer cell. It has been recognised that malignant transformation occurs through successive mutations in specific cellular genes, leading to the activation of oncogenes and inactivation of tumor suppressor genes. The further study of these genes has generated much of its excitement from the convergence of experiments addressing the genetic basis of cancer, together with cellular pathways that normally control important cellular regulatory programmes. In the present review the context in which oncogenes such as proliferation, cell death/apoptosis, differentiation and senescence will be described, as well as how these cellular programmes become deregulated in cancer due to mutations.  相似文献   

10.
Although chromosome mis-segregation is a hallmark of cancer cells, its genetic basis and role in malignant transformation remain poorly understood. In recent years, several mouse models have been generated that harbor gene defects that perturb high-fidelity chromosome segregation. Analysis of these models has revealed that whole chromosome instability (W-CIN) can cause, inhibit or have no effect on tumorigenesis. Here we propose that the effect of W-CIN on tumor development depends on the particular W-CIN gene that is defective, including its other cellular functions, the extent or nature of the gene defect, the affected tissue or cell type and the context of other cancer gene mutations.  相似文献   

11.
End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa (“field effect”) of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis.  相似文献   

12.
In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer.  相似文献   

13.
A large number of etiological factors and the complexity of breast cancers present challenges for prevention and treatment. Recently, the emergence of microRNAs (miRNAs) as cancer biomarkers has added an extra dimension to the ‘molecular signatures’ of breast cancer. Bioinformatic analyses indicate that each miRNA can regulate hundreds of target genes and could serve functionally as ‘oncogenes’ or ‘tumour suppressor’ genes, and co‐ordinate multiple cellular processes relevant to cancer progression. A number of studies have shown that miRNAs play important roles in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer cells. This review provides a comprehensive overview of miRNAs with established functional relevance in breast cancer, their established target genes and resulting cellular phenotype. The role and application of circulating miRNAs in breast cancer is also discussed. Furthermore, we summarize the role of miRNAs in the hallmarks of breast cancer, as well as the possibility of using miRNAs as potential biomarkers for detection of breast cancer.  相似文献   

14.
15.
16.
Inflammatory infiltration of tumor stroma is an integral reflection of reactions that develop in response to any damage to tumor cells including immune responses to antigens or necrosis caused by vascular disorders. In this review, we use the term “immune-inflammatory response” (IIR) that allows us to give an integral assessment of the cellular composition of the tumor microenvironment. Two main types of IIRs are discussed: type 1 and 2 T-helper reactions (Th1 and Th2), as well as their inducers: immunosuppressive responses and reactions mediated by Th22 and Th17 lymphocytes and capable of modifying the main types of IIRs. Cellular and molecular manifestations of each IIR type are analyzed and their general characteristics and roles in tissue regeneration and tumor growth are presented. Since inflammatory responses in a tumor can also be initiated by innate immunity mechanisms, special attention is given to inflammation based on them. We emphasize that processes accompanying tissue regeneration are prototypes of processes underlying cancer progression, and these processes have the same cellular and molecular substrates. We focus on evidence that tumor progression is mainly contributed by processes specific for the second phase of “wound healing” that are based on the Th2-type IIR. We emphasize that the effect of various types of immune and stroma cells on tumor progression is determined by the ability of the cells and their cytokines to promote or prevent the development of Th1- or Th2-type of IIR. Finally, we supposed that the nonspecific influence on the tumor caused by the cytokine context of the Th1- or Th2-type microenvironment should play a decisive role for suppression or stimulation of tumor growth and metastasis.  相似文献   

17.
The existing models of cancer progression assume that a linear sequence of geneticand epigenetic events occurs during this process. In this representation every new event(either loss of a tumor-suppressor, or activation of a proto-oncogene) makes cells even moremalignant. The result is a “super” cell that can form metastases at the distant sites.Metastatic cells are believed to carry all genetic and epigenetic characteristics that arenecessary for metastasis formation. Recently, we have shown that cell-surface proteasehepsin causes disorganization of the basement membrane and promotes prostate cancerprogression and metastasis. In human prostate cancer hepsin is upregulated in theprecancerous lesions and this upregulation is maintained in the primary tumors. Remarkablyand completely unexpected for a metastasis-promoting gene, hepsin is expressed at lowlevels in metastatic lesions and the message is completely absent in metastasis-derivedprostate cancer cell lines. These results demonstrate that genes that play an important role inmetastatic process may exercise their role only at the specific fragments of cancerprogression pathway (for example, during initial invasion and tissue disorganization in theprimary organ) and may have no role in metastatic lesions. Future treatment of cancerpatients may rely heavily on monitoring of tumor progression, as treatment efficient inattenuation of initial tumor progression may be inefficient or even adverse at the advancestages of disease.  相似文献   

18.
The traditional view of cancer as a collection of proliferating cells must be reconsidered, and cancer must be viewed as a "tissue" constituted by both transformed cells and a heterogeneous microenvironment, that tumor cells construct and remodel during multistep tumorigenesis. The "tumor microenvironment" (TM) is formed by mesenchymal, endothelial, and immune cells immersed in a network of extracellular matrix (ECM) proteins and soluble factors. The TM strongly contributes to tumor progression, through long distance, cell-to-cell or cell-to-matrix signals, which influence different aspects of tumor cell behavior. Understanding the relationships among the different components of the cancer tissue is crucial to design and develop new therapeutic strategies. Ion channels are emerging as relevant players in the cross talk between tumor cells and their TM. Ion channels are expressed on tumor cells, as well as in the different cellular components of the TM. In all these cells, ion channels are in a strategic position to sense and transmit extracellular signals into the intracellular machinery. Often, this transmission is mediated by integrin adhesion receptors, which can be functional partners of ion channels since they form molecular complexes with the channel protein in the context of the plasma membrane. The same relevant role is exerted by ion transporters, which also contribute to determine two facets of the cancer tissue: hypoxia and the acidic extracellular pH. On the whole, it is conceivable to prospect the targeting of ion channels for new therapeutic strategies aimed at better controlling the malignant progression of the cancer tissue.  相似文献   

19.
The role of chemokines and the growth factors has been extensively analyzed both in cancer risk and tumor progression. The transforming growth factor beta (TGF-β) and chemokine (C-X-C motif) receptor 4 (CXCR4) genes are implicated in several diseases, including breast cancer. Genomic DNA was obtained from 21 samples of peripheral blood or from normal tissue, previously fixed in formalin and embedded in paraffin for TGF-β T869C polymorphism analyses. Total cellular RNA was extracted from the same 21 patients, but from fresh tissue (tumor and adjacent healthy from the same breast) for expression analysis by Real Time PCR. No significant differences were observed in genotype distribution according to clinicopathological characteristics. Transforming growth factor beta (TGF-β) mRNA expression was assessed according to T869C polymorphism and CC patients presented a higher TGF-β expression but not significant when compared to other genotypes (p?=?0.064). A positive correlation was observed in relative mRNA expressions of CXCR4 and TGF-β (p?=?0.020). It is known that overexpression of TGF-β by both tumor and stromal tissue can facilitate the development of metastases, mainly by TGF-β stimulated angiogenesis and increased tumor cell motility. Our findings suggested a role of these genes as progression markers for breast carcinoma.  相似文献   

20.
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号