首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy transduction in mitochondria involves five oligomeric complexes embedded within the inner membrane. They are composed of catalytic and noncatalytic subunits, the role of these latter proteins often being difficult to assign. One of these complexes, the bc1 complex, is composed of three catalytic subunits including cytochrome b and seven or eight noncatalytic subunits. Recently, several mutations in the human cytochrome b gene have been linked to various diseases. We have studied in detail the effects of a cardiomyopathy generating mutation G252D in yeast. This mutation disturbs the biogenesis of the bc1 complex at 36 degrees C and decreases the steady-state level of the noncatalytic subunit Qcr9p. In addition, the G252D mutation and the deletion of QCR9 show synergetic defects that can be partially bypassed by suppressor mutations at position 252 and by a new cytochrome b mutation, P174T. Altogether, our results suggest that the supernumerary subunit Qcr9p enhances or stabilizes the interactions between the catalytic subunits, this role being essential at high temperature.  相似文献   

2.
BACKGROUND: The cytochrome bc(1) complex is part of the energy conversion machinery of the respiratory and photosynthetic electron transfer chains. This integral membrane protein complex catalyzes electron transfer from ubiquinol to cytochrome c. It couples the electron transfer to the electrogenic translocation of protons across the membrane via a so-called Q cycle mechanism. RESULTS: The cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae was crystallized together with a bound antibody Fv fragment. The structure was determined at 2.3 A resolution using multiple isomorphous replacement, and refined to a crystallographic R factor of 22.2% (R(free) = 25.4%). The complex is present as a homodimer. Each 'monomer' of the refined model includes 2178 amino acid residues of subunits COR1, QCR2, COB, CYT1, RIP1, QCR6, QCR7, QCR8 and QCR9 of the cytochrome bc(1) complex and of the polypeptides V(H) and V(L) of the Fv fragment, the cofactors heme b(H), heme b(L), heme c(1), the [2Fe-2S] cluster and 346 water molecules. The Fv fragment binds to the extrinsic domain of the [2Fe-2S] Rieske protein and is essential for formation of the crystal lattice. CONCLUSIONS: The approach to crystallize membrane proteins as complexes with specific antibody fragments appears to be of general importance. The structure of the yeast cytochrome bc(1) complex reveals in detail the binding sites of the natural substrate coenzyme Q6 and the inhibitor stigmatellin. Buried water molecules close to the binding sites suggest possible pathways for proton uptake and release. A comparison with other cytochrome bc(1) complexes shows features that are specific to yeast.  相似文献   

3.
Hunte C 《FEBS letters》2001,504(3):126-132
The ubiquinol:cytochrome c oxidoreductase (EC 1.20.2.2, QCR or cytochrome bc1 complex) is a component of respiratory and photosynthetic electron transfer chains in mitochondria and bacteria. The complex transfers electrons from quinol to cytochrome c. Electron transfer is coupled to proton translocation across the lipid bilayer, thereby generating an electrochemical proton gradient, which conserves the free energy of the redox reaction. The yeast complex was crystallized with antibody Fv fragments, a promising technique to obtain well-ordered crystals from membrane proteins. The high-resolution structure of the yeast protein reveals details of the catalytic sites of the complex, which are important for electron and proton transfer.  相似文献   

4.
In Saccharomyces cerevisiae, the trans-membrane helix of Qcr8p, the ubiquinone binding protein of complex III, contributes to the Q binding site. In wild-type cells, residue 62 of the helix is non-polar (proline). Substitution of proline 62 with a polar, uncharged residue does not impair the ability of the cells to respire, complex III assembly is unaffected, ubiquinone occupancy of the Q binding site is unchanged, and mitochondrial ubiquinone levels are in the wild-type range. Substitution with a +1 charged residue is associated with partial respiratory competence, impaired complex III assembly, and loss of cytochrome b. Although ubiquinone occupancy of the Q binding site is similar to wild-type, total mitochondrial ubiquinone doubled in these mutants. Mutants with a +2 charged substitution at position 62 are unable to respire. These results suggest that the accumulation of ubiquinone in the mitochondria may be a compensatory mechanism for impaired electron transport at cytochrome b.  相似文献   

5.
Bcs1p, a mitochondrial protein and member of the conserved AAA protein family, is involved in the biogenesis of the cytochrome bc(1) complex. We demonstrate here that Bcs1p is directly required for the assembly of the Rieske FeS and Qcr10p proteins into the cytochrome bc(1) complex. Bcs1p binds to a precomplex in the assembly pathway of the cytochrome bc(1) complex. Binding of Bcs1p to and release from this assembly intermediate is driven by ATP hydrolysis. We propose that Bcs1p acts as an ATP-dependent chaperone, maintaining the precomplex in a competent state for the subsequent assembly of the Rieske FeS and Qcr10p proteins.  相似文献   

6.
Disruption of the gene for subunit 6 of the yeast cytochrome bc1 complex (QCR6) causes a temperature-sensitive petite phenotype in contrast to deletion of the coding region of QCR6, which shows no growth defect. Mitochondria from the petite strain carrying the disruption allele were devoid of ubiquinol-cytochrome c oxidoreductase activity but retained cytochrome c oxidase and oligomycin-sensitive ATPase activities. Optical spectra of cytochromes in mitochondrial membranes from the petite strain lacked a cytochrome b absorption band and had a reduced amount of cytochrome c1. Analysis of mitochondrial translation products showed normal synthesis of cytochrome b. Western analysis of mitochondrial membranes from this disruption strain indicates core protein 1 of the cytochrome bc1 complex is present in normal amounts, while cytochrome c1, the Rieske iron-sulfur protein, subunit 6, and subunit 7 were absent or present in very low amounts. Taken together, these findings indicate a loss of assembly of the cytochrome bc1 complex. High copy suppressors of the disruption strain were selected. Two separate families of suppressors were found. The first contained QCR6. The second family consisted of overlapping clones of a second gene distinct from QCR6. These plasmids contained QCR9, the gene which codes for subunit 9 of the yeast cytochrome bc1 complex. Suppression of the QCR6 disruption strain by overexpression of QCR9 indicates a critical interaction between these two proteins in the assembly of the cytochrome bc1 complex.  相似文献   

7.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

8.
Biochemical data have shown that specific, tightly bound phospholipids are essential for activity of the cytochrome bc1 complex (QCR), an integral membrane protein of the respiratory chain. However, the structure and function of such phospholipids are not yet known. Here we describe five phospholipid molecules and one detergent molecule in the X-ray structure of yeast QCR at 2.3 A resolution. Their individual binding sites suggest specific roles in facilitating structural and functional integrity of the enzyme. Interestingly, a phosphatidylinositol molecule is bound in an unusual interhelical position near the flexible linker region of the Rieske iron-sulfur protein. Two possible proton uptake pathways at the ubiquinone reduction site have been identified: the E/R and the CL/K pathway. Remarkably, cardiolipin is positioned at the entrance to the latter. We propose that cardiolipin ensures structural integrity of the proton-conducting protein environment and takes part directly in proton uptake. Site-directed mutagenesis of ligating residues confirmed the importance of the phosphatidylinositol- and cardiolipin-binding sites.  相似文献   

9.
《BBA》2020,1861(5-6):148177
The mitochondrial bc1 complex plays an important role in mitochondrial respiration. It transfers electrons from ubiquinol to the soluble electron shuttle cytochrome c and thereby contributes to the proton motive force across the inner mitochondrial membrane. In the yeast Saccharomyces cerevisiae, each monomer consists of three catalytic and seven accessory subunits. The bc1 complex is an obligate homo-dimer in all systems. It is currently not known when exactly during the assembly dimerization occurs. In this study, we determined that the dimer formation is an early event. Specifically, dimerization is mediated by the interaction of a stable tetramer formed by the two Cor subunits, Cor1 and Cor2, that joins assembly intermediate II, containing the fully hemylated cytochrome b and the two small accessory proteins, Qcr7 and Qcr8. Addition of cytochrome c1 and Qcr6 can either occur concomitantly or independently of dimerization. These results reveal a strict order in assembly, where dimerization occurs after stabilization of co-factor acquisition by cytochrome b. Finally, assembly is completed by addition of the remaining subunits.  相似文献   

10.
We investigated the kinetics of the mitochondrial respiratory chain, proton leak, and phosphorylating subsystems of liver mitochondria from mannoheptulose-treated and control rats. Mannoheptulose treatment raises glucagon and lowers insulin; it had no effect on the kinetics of the mitochondrial proton leak or phosphorylating subsystems, but the respiratory chain from succinate to oxygen was stimulated. Previous attempts to detect any stimulation of cytochrome c oxidase by glucagon are shown by flux control analysis to have used inappropriate assay conditions. To investigate the site of stimulation of the respiratory chain we measured the relationship between the thermodynamic driving force and respiration rate for the span succinate to coenzyme Q, the cytochrome bc1 complex and cytochrome c oxidase. Hormone treatment of rats altered the kinetics of electron transport from succinate to coenzyme Q in subsequently isolated mitochondria and activated succinate dehydrogenase. The kinetics of electron transport through the cytochrome bc1 complex were not affected. Effects on cytochrome c oxidase were small or nonexistent.  相似文献   

11.
Human disease-related mutations in cytochrome b studied in yeast   总被引:1,自引:0,他引:1  
Several mutations in the mitochondrially encoded cytochrome b have been reported in patients. To characterize their effect, we introduced six "human" mutations, namely G33S, S152P, G252D, Y279C, G291D, and Delta252-259 in the highly similar yeast cytochrome b. G252D showed wild type behavior in standard conditions. However, Asp-252 may interfere with structural lipid and, in consequence, destabilize the enzyme assembly, which could explain the pathogenicity of the mutation. The mutations G33S, S152P, G291D, and Delta252-259 were clearly pathogenic. They caused a severe decrease of the respiratory function and altered the assembly of the iron-sulfur protein in the bc(1) complex, as observed by immunodetection. Suppressor mutations that partially restored the respiratory function impaired by S152P or G291D were found in or close to the hinge region of the iron-sulfur protein, suggesting that this region may play a role in the stable binding of the subunit to the bc(1) complex. Y279C caused a significant decrease of the bc(1) function and perturbed the quinol binding. The EPR spectra showed an altered signal, indicative of a lower occupancy of the Q(o) site. The effect of human mutation of residue 279 was confirmed by another change, Y279A, which had a more severe effect on Q(o) site properties. Thus by using yeast as a model system, we identified the molecular basis of the respiratory defect caused by the disease mutations in cytochrome b.  相似文献   

12.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

13.
The mitochondrial cytochrome b missense mutation, G167E, has been reported in a patient with cardiomyopathy. The residue G167 is located in an extramembranous helix close to the hinge region of the iron-sulfur protein. In order to characterize the effects of the mutation on the structure and function of the bc(1) complex, we introduced G167E into the highly similar yeast cytochrome b. The mutation had a severe effect on the respiratory function, with the activity of the bc(1) complex decreased to a few per cent of the wild type. Analysis of the enzyme activity indicated that the mutation affected its stability, which could be the result of an altered binding of the iron-sulfur protein on the complex. G167E had no major effect on the interaction between the iron-sulfur protein headgroup and the quinol oxidation site, as judged by the electron paramagnetic resonance signal, and only a minor effect on the rate of cytochrome b reduction, but it severely reduced the rate of cytochrome c(1) reduction. This suggested that the mutation G167E could hinder the movement of the iron-sulfur protein, probably by distorting the structure of the hinge region. The function of bc(1) was partially restored by mutations (W164L and W166L) located close to the primary change, which reduced the steric hindrance caused by G167E. Taken together, these observations suggest that the protein-protein interaction between the n-sulfur protein hinge region and the cytochrome b extramembranous cd2 helix is important for maintaining the structure of the hinge region and, by consequence, the movement of the headgroup and the integrity of the enzyme.  相似文献   

14.
A detergent-solubilized, three-subunit-containing cytochrome bc1 complex, isolated from the photosynthetic bacterium R. rubrum, has been shown to be highly sensitive to stigmatellin, myxothiazol, antimycin A and UHDBT, four specific inhibitors of these complexes. Oxidation-reduction titrations have allowed the determination of Em values for all the electron-carrying prosthetic groups in the complex. Antimycin A has been shown to produce a red shift in the alpha-band absorbance maximum of one of the cytochrome b hemes in the complex and stigmatellin has been shown to alter both the Em and EPR g-values of the Rieske iron-sulfur protein in the complex. Western blots have revealed antigenic similarities between the cytochrome subunits of the R. rubrum complex and those of the related photosynthetic bacteria, Rb. capsulatus and Rb. sphaeroides. The R. rubrum complex has been incorporated into liposomes. These liposomes exhibit respiratory control and are able to couple electron transfer from quinol to cytochrome c to proton translocation across the liposome membrane in a manner consistent with a Q-cycle mechanism. It can thus be concluded that neither electron transport nor coupled proton translocation by the cytochrome bc1 complex requires more than three subunits in R. rubrum.  相似文献   

15.
A nuclear gene (QCR9) encoding the 7.3-kDa subunit 9 of the mitochondrial cytochrome bc1 complex from Saccharomyces cerevisiae has been isolated from a yeast genomic library by hybridization with a degenerate oligonucleotide corresponding to nine amino acids proximal to the N terminus of purified subunit 9. QCR9 includes a 195-base pair open reading frame capable of encoding a protein of 66 amino acids and having a predicted molecular weight of 7471. The N-terminal methionine of subunit 9 is removed posttranslationally because the N-terminal sequence of the purified protein begins with serine 2. The ATG triplet corresponding to the N-terminal methionine is separated from the open reading frame by an intron. The intron is 213 base pairs long and contains previously reported 5' donor, 3' acceptor, and TACTAAC sequences necessary for splicing. The splice junctions, as well as the 5' end of the message, were confirmed by isolation and sequencing of a cDNA copy of QCR9. In addition, the intron contains a nucleotide sequence in which 15 out of 18 nucleotides are identical with a sequence in the intron of COX4, the nuclear gene encoding cytochrome c oxidase subunit 4. The deduced amino acid sequence of the yeast subunit 9 is 39% identical with that of a protein of similar molecular weight from beef heart cytochrome bc1 complex. If conservative substitutions are allowed for, the two proteins are 56% similar. The predicted secondary structure of the 7.3-kDa protein revealed a single possible transmembrane helix, in which the amino acids conserved between beef heart and yeast are asymmetrically arranged along one face of the helix, implying that this domain of the protein is involved in a conserved interaction with another hydrophobic protein of the cytochrome bc1 complex. Two yeast strains, JDP1 and JDP2, were constructed in which QCR9 was deleted. Both strains grew very poorly, or not at all, on nonfermentable carbon sources and exhibited, at most, only 5% of wild-type ubiquinol-cytochrome c oxidoreductase activity. Optical spectra of mitochondrial membranes from the deletion strains revealed slightly reduced levels of cytochrome b. When JDP1 and JDP2 were complemented with a plasmid carrying QCR9, the resulting yeast grew normally on ethanol/glycerol and exhibited normal cytochrome c reductase activities and optical spectra. These results indicate that QCR9 encodes a 7.3-kDa subunit of the bc1 complex that is required for formation of a fully functional complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Deletion of QCR9, the nuclear gene encoding subunit 9 of the mitochondrial cytochrome bc1 complex in Saccharomyces cerevisiae, results in inactivation of the bc1 complex and inability of the yeast to grow on non-fermentable carbon sources. The loss of bc1 complex activity is due to loss of electron transfer activity at the ubiquinol oxidase site (center P) in the complex. Electron transfer at the ubiquinone reductase site (center N), is unaffected by the loss of subunit 9, but the extent of cytochrome b reduction is diminished. This is the first instance in which a supernumerary polypeptide, lacking a redox prosthetic group, has been shown to be required for an electron transfer reaction within the cytochrome bc1 complex.  相似文献   

17.
Radioimmunoassay and quantitative immunoblot analysis have been developed for quantitation of the iron-sulfur protein of cytochrome bc1 complex in order to compare its content in isolated cytochrome bc1 complex with that in electron transport particles. The result by radioimmunoassay indicated that the content of the iron-sulfur protein/mol of cytochrome b is higher by approximately 30%, on the average, in electron transport particles than in cytochrome bc1 complex. This observation was supported by the data of immunoblot analysis. Since approximately 1/3 of cytochrome b in electron transport particles is not attributed to cytochrome bc1 complex, but to succinate-ubiquinone oxidoreductase complex (Davis, K.A., Hatefi, Y., Poff, K. L., and Butler, W. L. (1973) Biochim. Biophys. Acta 325, 341-356), the ratio of the iron-sulfur protein detectable by radioimmunoassay in electron transport particles to that in cytochrome bc1 complex is calculated to be approximately 2 on the basis of the content of 2 mol of b-type heme/mol of the complex. Therefore, it appears that the mitochondrial inner membrane contains approximately two times as much of the immunoreactive iron-sulfur protein as what is expected from the stoichiometry of one iron-sulfur center and two b-type hemes for cytochrome bc1 complex. This finding affords an interesting aspect in the study of biogenesis of cytochrome bc1 complex.  相似文献   

18.
The ubihydroquinone:cytochrome c oxidoreductase (also called complex III, or bc (1) complex), is a multi subunit enzyme encountered in a very broad variety of organisms including uni- and multi-cellular eukaryotes, plants (in their mitochondria) and bacteria. Most bacteria and mitochondria harbor various forms of the bc (1) complex, while plant and algal chloroplasts as well as cyanobacteria contain a homologous protein complex called plastohydroquinone:plastocyanin oxidoreductase or b (6) f complex. Together, these enzyme complexes constitute the superfamily of the bc complexes. Depending on the physiology of the organisms, they often play critical roles in respiratory and photosynthetic electron transfer events, and always contribute to the generation of the proton motive force subsequently used by the ATP synthase. Primarily, this review is focused on comparing the 'mitochondrial-type' bc (1) complex and the 'chloroplast-type' b (6) f complex both in terms of structure and function. Specifically, subunit composition, cofactor content and assembly, inhibitor sensitivity, proton pumping, concerted electron transfer and Fe-S subunit large-scale domain movement of these complexes are discussed. This is a timely undertaking in light of the structural information that is emerging for the b (6) f complex.  相似文献   

19.
Two conserved charged amino acids, aspartate-186 and arginine-190, localized in the aqueous head region of the iron-sulfur protein of the cytochrome bc(1) complex of yeast mitochondria, were mutated to alanine, glutamate, or asparagine and isoleucine, respectively. The R190I mutation resulted in the complete loss of antimycin- and myxothiazol-sensitive cytochrome c reductase activity due to loss of more than 60% of the iron-sulfur protein in the complex. Mitochondria isolated from the D186A mutant had a 50% decrease in cytochrome c reductase activity but no loss of the iron-sulfur protein or the [2Fe-2S] cluster. The midpoint potential of the [2Fe-2S] cluster of the D186A mutant was decreased from 281 to 178 mV. The D186E and D186N mutations did not result in a loss of cytochrome c reductase activity or content of iron-sulfur protein; however, the redox potential of the [2Fe-2S] cluster of D186N was decreased from 281 to 241 mV. Molecular modeling/dynamics studies predicted that substituting an alanine for Asp-186 causes global structural changes in the head group of the iron-sulfur protein resulting in changes in the orientation of the [2Fe-2S] cluster and consequently a lowered redox potential. The rate of electrogenic proton pumping in the bc(1) complex isolated from mutant D186A reconstituted into proteoliposomes decreased 64%; however, the H(+)/2e(-) ratio of 1.9 was identical in the mutant and the wild-type complexes. The carboxyl binding reagent, N-(ethoxycarbonyl)-2-ethoxyl-1,2-dihydroquinoline (EEDQ) blocked electrogenic proton pumping in the bc(1) complex reconstituted into proteoliposomes without affecting electron transfer resulting in a decrease in the H(+)/2e(-) ratio to 1.2 and 1.1, respectively. EEDQ was bound to the iron-sulfur protein and core protein II in both the wild type and the D186A mutant, indicating that Asp-186 of the iron-sulfur protein is not required for proton translocation in the bc(1) complex.  相似文献   

20.
We report here that N,N'-dicyclohexylcarbodiimide (DCCD) decreases the H/2e stoichiometry of the cytochrome bc1 complex from 3.8 +/- 0.2 (10) to 2.1 +/- 0.1 (8) but has only a minimal effect on the H/2e ratio of cytochrome oxidase under the relatively mild conditions used. The effect on the bc1 complex cannot be explained by uncoupling, by inhibition of electron transport or by selective mitochondrial damage. We conclude that DCCD is an inhibitor of proton translocation within the bc1 complex. There are three possible explanations of this effect: (a) DCCD could alter the pathway of electron flow, (b) DCCD could prevent one of the proton translocation reactions but not electron transport, (c) DCCD could prevent the conduction of the translocated proton to the external phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号