首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The viability of cells made homozygous for different deficiencies by induced mitotic recombination was examined. The deficiencies varied in length from two to 30 polytene chromosome bands and were distributed over the five major chromosome arms. Among a sample of 30, ten deficiencies were cell viable. Our results show that 12% of the genome is necessary for cell survival, supporting previous estimates of about 5,000 genes in the genome of Drosophila.  相似文献   

3.
4.
Eanes WF  Hey J  Houle D 《Genetics》1985,111(4):831-844
We report here a study of viability inbreeding depression associated with the X chromosome of Drosophila melanogaster. Fifty wild chromosomes from Mt. Sinai, New York, and 90 wild chromosomes from Death Valley, California, were extracted using the marked FM6 balancer chromosome and viabilities measured for homozygous and heterozygous females, and for hemizygous males, relative to FM6 males as a standard genotype. No statistically significant female genetic load was observed for either chromosome set, although a 95% confidence limit estimated the total load <0.046 for the samples pooled. About 10% of the Death Valley chromosomes appear to be "supervital" as homozygotes. There is little evidence for a pervasive sex-limited detrimental load on the X chromosome; the evidence indicates nearly identical viability effects in males and homozygous females excluding the supervital chromosomes. The average degree of dominance for viability polygenes is estimated between 0.23 to 0.36, which is consistent with autosomal variation and implies near additivity. We conclude that there is little genetic load associated with viability variation on the X chromosome and that the substantial reduction in total fitness observed for chromosome homozygosity in an earlier study may be due largely to sex-limited fertility in females.  相似文献   

5.
We have analyzed the viability of different types of X chromosomes in homozygous clones of female germ cells. The chromosomes carried viable mutations, single-cistron zygotic-lethal and semi-lethal mutations, or small (about six chromosome band) deletions. Homozygous germ-line clones were produced by recombination in females heterozygous for an X-linked, dominant, agametic female sterile.

All the zygotic-viable mutants are also viable in germ cells. Of 16 deletions tested (uncovering a total of 93 bands) only 2 (of 4 and 5 bands) are germ-cell viable. Mutations in 15 lethal complementation groups in the zeste-white region were tested. When known, the most extreme alleles at each locus were tested. Only in five loci (33%) were the mutants viable in the germ line. Similar studies of the same deletions and point-mutant lethals in epidermal cells show that 42% of the bands and 77% of the lethal alleles are viable. Thus, germ-line cells have more stringent cell-autonomous genetic requirements than do epidermal cells.

The eggs recovered from clones of three of the germ-cell viable zw mutations gave embryos arrested early in embryogenesis, although genotypically identical embryos derived from heterozygous oogonia die as larvae or even hatch as adult escapers. For two genes, homozygosis of the mutations tested also caused embryonic arrest of heterozygous female embryos, and in one case, the eggs did not develop at all. Germ-line clones of one quite leaky mutation gave eggs that were indistinguishable from normal. The abundance of genes whose products are required for oogenesis, whose products are required in the oocyte, and whose activity is required during zygotic development is discussed.

  相似文献   

6.
Ray Moree 《Genetics》1972,70(4):595-610
The viability effects of chromosomes from an old and from a new laboratory strain of D. melanogaster were studied in eight factorial combinations and at two heterozygosity levels. The combinations were so constructed that heterozygosity level could be varied in the third chromosomes of the carriers of a homozygous lethal marker, in the third chromosomes of their wild-type segregants, and in the genetic backgrounds of both. Excluding the effect of the marker and the exceptional outcomes of two of the combinations, and taking into account both large and small deviations from theoretical expectation, the following summary is given as the simplest consistent explanation of the results: 1) If total heterozygosities of two segregant types tend toward equality their viabilities tend toward equality also, whether background heterozygosity is high or low; if background heterozygosities is higher the tendency toward equality is slightly greater. 2) If total heterozygosity of two segregant types are unequal the less heterozygous type has the lower viability; the difference is more pronounced when background heterozygosity is low, less when it is high. 3) Differences between segregant viabilities are correlated with differences between the total heterozygosities of the two segregants; genetic background is effective to the extent, and only to the extent, that it contributes to the magnitude of this difference. This in turn appears to underlie, at least partly, the expression of a pronounced interchromosomal epistasis. Thus in this study viability is seen to depend upon both the quantity and distribution of heterozygosity, not only among the chromosomes of an individual but among the individuals of a given combination as well.  相似文献   

7.
8.
Females homozygous for the maternal-effect mutation abo (2-44.0) produce a large fraction of eggs which arrest during embryogenesis. Increasing doses of defined heterochromatic regions inherited by offspring of abo mothers from their fathers function zygotically to bring about a partial rescue of the abo-induced embryonic lethality. Another property of the abo mutation is that the severity of the maternal effect decreases when an abo stock is maintained in homozygous condition for a number of generations. Here, we show that the factors which change in homozygous abo stocks to result in the decrease in maternally induced embryonic lethality, act zygotically, dominantly and additively. More importantly, we show that the X and second chromosomes, but not the Y and third chromosomes, derived from homozygous abo stocks are, when inherited from males, more effective in promoting zygotic rescue of the abo-induced lethality than are the equivalent chromosomes derived from an abo stock maintained in heterozygous condition. The chromosomal locations of the factors maintained in the homozygous condition. The chromosomal locations of the factors altered in homozygous stock, as well as their behavior, strongly suggest that the same heterochromatic elements that are responsible for rescuing embryos from the abo-induced maternal effect are altered in homozygous abo flies in such a way that the maternal effect itself is less severe.  相似文献   

9.
Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500r over either two or four generations for total X-ray exposures of 5,000r or 10,000r. Chromosomes treated with 5,000r were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000r were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2–4% in tests performed with the 10,000r chromosomes, and by 1% in those involving the 5,000r material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. Nondrastic irradiated chromosomes did not show detectable heterozygous effects. They also showed no homozygous effects when compared to a sample of untreated controls. In addition, there was no evidence for an induced genetic component of variance with respect to viability in these chromosomes. These results suggest that the mutants induced by high doses of X-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition.  相似文献   

10.
11.
Ohmi Ohnishi 《Genetics》1977,87(3):529-545
Polygenic mutations affecting viability were accumulated on the second chromosome of Drosophila melanogaster by treating flies with EMS in successive generations. The treated chromosomes were later made homozygous and tested for their effects on viability by comparison of the frequency of such homozygotes with that of other genotypes in the same culture. The treated wild-type chromosomes were kept heterozygous in Pm/+ males by mating individual males in successive generations to Cy/Pm females. The number of generations of accumulation was 1 to 30 generations, depending on the concentration of EMS. A similar experiment for spontaneous polygenic mutations was also conducted by accumulating mutations for 40 generations. The lower limit of the spontaneous mutation rate of viability polygenes is estimated to be 0.06 per second chromosome per generation, which is about 12 times as high as the spontaneous recessive lethal mutation rate, 0.005. EMS-induced polygenic mutations increase linearly with the number of treated generations and with the concentration of EMS. The minimum mutation rate of viability polygenes is about 0.017 per 10(-4)m, which is only slightly larger than the lethal rate of 0.013 per 10(-4) m. The maximum estimate of the viability reduction of a single mutant is about 6 to 10 percent of the normal viability. The data are consistent with a constant average effect per mutant at all concentrations, but this is about three times as high as that for spontaneous mutants. It is obvious that one can obtain only a lower limit for the mutation rate, since some mutants may have effects so near to zero that they cannot be detected. The possibility of measuring something other than the lower limit is discussed. The ratio of the load due to detrimental mutants to that caused by lethals, the D/L ratio, is about 0.2 to 0.3 for EMS-induced mutants, as compared to about 0.5 for spontaneous mutants. This is to be expected if EMS treatment produces a large fraction of small deletions and other chromosome rearrangements which are more likely to be lethal.  相似文献   

12.
Terumi Mukai 《Genetics》1970,65(2):335-348
  相似文献   

13.
Pedro Ripoll 《Genetics》1980,94(1):135-152
In Drosophila melanogaster, individuals heterozygous for translocations between chromosomes Y and 3 can generate, by means of mitotic recombination, somatic cells bearing duplications and deletions. Using translocations with different breakpoints, I have studied the behavior of clones of cells with increasing degrees of aneuploidy in the abdominal cuticle. Both hyper- and hypoploid cells can survive being duplicated or deficient even for large chromosome 3 fragments. While hyperploidy does not severely affect cell viability, the recovery of hypoploid clones decreases linearly as a function of the size of the deleted fragment. In this report, the quantitative and qualitative aspects of this effect are discussed.  相似文献   

14.
15.
Pedro Ripoll 《Genetics》1977,86(2):357-376
The behavior in genetic mosaics of 86 EMS-induced sex-linked lethals has been studied. Seventy-five percent of them are autonomous in gynandromorphs. Forty-three lethals nonviable in sex mosaics have been analyzed in X-ray-induced spots in the abdominal tergites and the imaginal wing derivatives. Of the lethals, 90.7% are homozygous viable in mosaic spots, and only 9.3% have been classified as epidermal cell lethal. Thus, the fraction of the Drosophila genome essential for cell viability has been estimated to be about 420 genes. The phenotypes at the cellular level of some cell-viable mutations altering cell parameters (mitotic orientation, differentiation, etc.) are described.  相似文献   

16.
Simmons MJ  Preston CR  Engels WR 《Genetics》1980,95(2):467-475
The relative viabilities and fitnesses of wild-type second chromosomes in heterozygous condition were determined. Joint analysis of these permitted an estimation of a parameter that relates the viability effect of a mutation to its effect on fitness as a whole. For newly arisen mutations, the estimate was slightly greater than one, indicating that the reductions in viability caused by these mutations are associated with reductions in other components of fitness. For mutations from an equilibrium population, the estimate of the parameter was near zero, implying that the deleterious viability effects of these mutations are compensated by improvements in other aspects of fitness.  相似文献   

17.
Temin RG 《Genetics》1978,89(2):315-340
More than 700 EMS-treated second chromosomes marked with either cn (cinnabar) or bw (brown), and derived from long-inbred stocks, were measured for their heterozygous effects on viability in both isogenic (homozygous) and nonisogenic (heterozygous) backgrounds. Each test was replicated five times. When the background was homozygous, flies heterozygous for a treated chromosome were an average of 2.1% less viable, per 0.005 m EMS, than flies heterozygous for an untreated chromosome. Classified according to their homogous effect in an accompanying series of crosses, the lethal-bearing chromosomes (L), which carry genes of less drastic effects as well, reduced the viability of their heterozygous carriers by 3.3%, severe detrimentals (D(s)) by 2.2%, and mild detrimentals (D(m)) by 1.2% at this dose. In the heterozygous background, the mean heterozygous disadvantage for the entire group was 1%, or about half as large.--When computed separately for each count from a single mating, the heterozygous disadvantage was consistently greatest for the earliest counts (4.8%), next highest for the middle count (0.8%), and lowest in the latest count (0.5%), in the homozygous background, indicating that mutant heterozygotes were delayed in time of emergence. The figures in the heterozygous background were, again, reduced, but in the same direction.-The relative viability disadvantage of the cn marker was about 2(1/2) times greater in the homozygous than in the heterozygous background, further supporting the conclusion that the homozygous background can accentuate differences. The enhancement of treatment and marker effects could be a direct result of the level of background heterozygosity per se or attributable to the reduced vigor of the inbred strain.-Dominance, a measure of the heterozygous effect of a mutant relative to its homozygous effect, is greater for genes with small homozygous disadvantage than for more drastic genes. In the homozygous background the average dominance for lethals was 0.019 in contrast to 0.183 for mild detrimentals, supporting other published results suggesting that genes with milder effect, because they occur more frequently, have a greater impact on a population.-The homozygous D:L ratio of EMS mutations was 0.266 and the D(m): L ratio, 0.092, which are lower than comparable load ratios for spontaneous mutations, but greater than for X-ray induced mutations.  相似文献   

18.
The nature of fitness interactions is an important, yet unsolved, question in population genetics. We compare the egg-to-adult viability of individuals homozygous for either a second or a third chromosome with the viability of individuals homozygous for both chromosomes simultaneously. On the average, the viability of the two-chromosome homozygotes is somewhat greater than expected assuming that the fitnesses of the single-chromosome homozygotes interact in a multiplicative fashion. This result differs from previous observations that indicate either no significant deviations from the expectation or lower-than-expected average fitnesses for the double homozygotes.  相似文献   

19.
20.
Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.-The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号