首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.  相似文献   

2.
3.
The immunogenicity of the pertussis vaccine can be significantly improved by adding Bordetella pertussis oligosaccharide with multiple trisaccharide units. The more trisaccharide units there are, the better the efficiency of the immune response induction. However, natural B. pertussis oligosaccharides usually contain only a single terminal trisaccharide unit. In addition, B. pertussis is pathogenic, and there are potential safety hazards when preparing oligosaccharides from B. pertussis. In this study, Escherichia coli MG1655 was engineered to produce B. pertussis oligosaccharides containing multiple trisaccharide units. Fifty-nine genes relevant to the biosynthesis of the O-antigen and core oligosaccharide of lipopolysaccharide, enterobacterial common antigen, and colanic acid were deleted in MG1655, resulting in strain MDCO020. Then, 25 genes relevant to the biosynthesis of the oligosaccharide antigen in B. pertussis and 3 genes relevant to the repeating trisaccharide unit in Pseudomonas aeruginosa PAO1 were overexpressed in MDCO020, resulting in the recombinant E. coli MDCO020/pWpBpD5. The production of B. pertussis oligosaccharide with multiple trisaccharide units by MDCO020/pWpBpD5 was confirmed by SDS-PAGE and 1H NMR analyses, and its immune response-stimulating activity was confirmed by using rabbit anti-pertussis serum.  相似文献   

4.
The introduction of pertussis vaccination in the 1950s resulted in a significant decrease in the incidence of disease. However, since the 1990s many highly vaccinated countries have observed the re-emergence of the disease. One of the causes of this phenomenon might be related to the adaptation of Bordetella pertussis to vaccination. The purpose of the presented study was an investigation of the emergence and spread of vaccine antigen-deficient B. pertussis isolates in Poland and genomic characterization of the currently circulating pathogen population using PFGE, MLVA and MAST. The results revealed that all tested isolates expressed Ptx, FHA and ACT antigens but 15.4% (4/26) of isolates from 2010 to 2016 were Prn-deficient. Moreover, one TcfA-deficient isolate was collected in 2015. The genotyping showed a genetic distinction between the isolates circulating in 2010–2016 and isolates from previous periods. The majority of currently circulating isolates belonged to PFGE group IV (96.2%), type MT27 (73.1%), and carried ptxA1-ptxC2-ptxP3-prn2-tcfA2-fim2-1-fim3-1 alleles (61.5%). The unique genetic structure of the B. pertussis population in Poland has changed since 2010 and became similar to that observed in countries with aP vaccination. This could be a result of increasing use of aP vaccines (60% of primary vaccination in 2013) over wP vaccines, which have been broadly used for primary vaccination in Poland for decades.  相似文献   

5.
Pertussigen [pertussis toxin (Ptx)] from Bordetella pertussis, when detoxified, induces protection in mice to intracerebral challenge (ic) with virulent B. pertussis. In its native form, minute nonprotective doses promote the development of immunity induced by other antigens of B. pertussis. As little as 4 ng of Ptx, given with a nonprotective dose of 8 X 10(7) killed cells of the phase III Sakairi strain, promoted detectable protection to ic challenge. Native Ptx in doses of 0.4 to 400 ng did not protect mice, and vaccines made from strains not producing Ptx induced only weak protection. The marked enhancing action of Ptx was also observed with 5 micrograms of purified filamentous hemagglutinin and with vaccines made from other species of the Bordetella genus, such as B. parapertussis and B. bronchiseptica, but it was not observed with B. pertussis endotoxin. In addition, Ptx was still effective when given as late as 7 days after the vaccine. Antibodies to surface antigens of the challenge strain were demonstrated in sera of mice immunized with vaccines prepared with the different Bordetella species tested, but antibodies to Ptx were detected only in the sera of mice immunized with the wild-type B. pertussis strains. Glutaraldehyde detoxified Ptx does not have this action. Pretreatment of normal mice with Ptx, also enhanced the protective action of a mouse antiserum to a wild-type strain of B. pertussis. These observations show that antigens other than Ptx are responsible for the protection, and that Ptx acts non-specifically to enhance the mouse protective action of those antigens.  相似文献   

6.
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.  相似文献   

7.
Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.  相似文献   

8.
Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice.  相似文献   

9.
10.
Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin''s role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin''s role in infection and understand the impact of antipertactin antibodies on bacterial fitness.  相似文献   

11.
In Japan, the Bordetella pertussis strain Tohama provided by the National Institute of Health, Japan has been used for the production of acellular pertussis (aP) vaccines since 1981. In the present study, in order to verify the genetic consistency of B. pertussis vaccine seed strains, we analyzed the genetic properties of the working seeds obtained from five Japanese vaccine manufacturers, and compared them with those of B. pertussis Tohama reference strains (NIID L-7 and ATCC BAA-589). Genetic analyses with pulsed-field gel electrophoresis and allele typing showed 100% genetic identity among the five seed strains and the Tohama reference strains. In addition, Southern blot analyses revealed the absence of four orthologous genes (BB0537, BB0920, BB1149 and BB4885), which are specifically absent in the strain Tohama, and in the genome of all seed strains tested, suggesting that the regions of difference (RD11–RD14) are absent in their genomes. Consequently, no genetic difference was observed among the working seeds and Tohama reference strains. Our observations indicate that B. pertussis seed strains for Japanese aP vaccine production are genetically comparable with B. pertussis Tohama.  相似文献   

12.

Background

Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccine candidate, named BPZE1, able to protect infant mice after a single nasal administration.

Methodology/Principal Findings

We determined the protective mechanism of BPZE1-mediated immunity by using passive transfer of T cells and antibodies from BPZE1-immunized mice to SCID mice. Clearance of Bordetella pertussis from the lungs was mediated by both BPZE1-induced antibodies and CD4+, but not by CD8+ T cells. The protective CD4+ T cells comprised IFN-γ-producing and IL-17-producing subsets, indicating that BPZE1 induces both Th1 and Th17 CD4+ T cells. In addition, and in contrast to acellular pertussis vaccines, BPZE1 also cross-protected against Bordetella parapertussis infection, but in this case only the transfer of CD4+ T cells conferred protection. Serum from BPZE1-immunized mice was not able to kill B. parapertussis and did not protect SCID mice against B. parapertussis infection.

Conclusions/Significance

The novel live attenuated pertussis vaccine BPZE1 protects in a pre-clinical mouse model against B. pertussis challenge by both BPZE1-induced antibodies and CD4+ T cell responses. It also protects against B. parapertussis infection. However, in this case protection is only T cell mediated.  相似文献   

13.
14.
Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells.  相似文献   

15.
The NMDA receptor containing GluN2B subunits represents a promising target for the development of drugs for the treatment of various neurological disorders including neurodegenerative diseases. In order to study the role of CH3 and OH moieties trisubstituted tetrahydro-3-benzazepines 4 were designed as missing link between tetra- and disubstituted 3-benzazepines 2 and 5. The synthesis of 4 comprises eight reaction steps starting from alanine. The intramolecular Friedel-Crafts acylation to obtain the ketone 12 and the base-catalyzed elimination of trifluoromethanesulfinate (CF3SO2?) followed by NaBH4 reduction represent the key steps. The GluN2B affinity of the cis-configured 3-benzazepin-1-ol cis-4a with a 4-phenylbutyl side chain (Ki?=?252?nM) is considerably lower than the GluN2B affinity of (R,R)-2 (Ki?=?17?nM) indicating the importance of the phenolic OH moiety for the interaction with the receptor protein. Introduction of an additional CH3 moiety in 2-position led to a slight decrease of GluN2B affinity as can be seen by comparing the affinity data of cis-4a and 5. The homologous phenylpentyl derivative cis-4b shows the highest GluN2B affinity (Ki?=?56?nM) of this series of compounds. According to docking studies cis-4a adopts the same binding mode as the cocrystallized ligand ifenprodil-keto 1A and 5 at the interface of the GluN2B and GluN1a subunits. The same crucial H-bonds are formed between the C(O)NH2 moiety of Gln110 within the GluN2B subunit and the protonated amino moiety and the OH moiety of (R,R)-cis-4a.  相似文献   

16.
Mutants of pertussis toxin (PT) S1 subunit and filamentous hemagglutinin (FHA) type I immunodominant domain from Bordetella pertussis (B. pertussis) are considered to be effective candidate antigens for acellular pertussis vaccines; however, the substantial progress is hampered in part for the lack of a suitable in vitro expression system. In this paper, the gene sequences of a S1 mutant C180-R9K/E129G (mS1) and a truncated peptide named Fs from FHA type I immunodominant domain were linked together and constructed to pET22b expression vector as a fusion gene; after inducing with IPTG, it was highly expressed in E. coli BL21 (DE3) as inclusion body. The fusion protein FsmS1 was purified from cell lysates and refolded successfully. The result of Western blotting indicate that it was able to react with both anti-S1 and anti-FHA McAbs; antiserum produced from New Zealand white rabbits immunized with this protein was able to recognize both native PT and FHA antigens as determined by western blotting. These data have provided a novel feasible method to produce PT S1 subunit and FHA type I immunodominant domain in large scale in vitro, which is implicated for the development of multivalent subunit vaccines candidate against B. pertussis infection.  相似文献   

17.
Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, which is a highly contagious disease in the human respiratory tract. Despite vaccination since the 1950s, pertussis remains the most prevalent vaccine-preventable disease in developed countries. A recent resurgence pertussis is associated with the expansion of B. pertussis strains with a novel allele for the pertussis toxin (ptx) promoter ptxP3 in place of resident ptxP1 strains. The recent expansion of ptxP3 strains suggests that these strains carry mutations that have increased their fitness. Compared to the ptxP1 strains, ptxP3 strains produce more Ptx, which results in increased virulence and immune suppression. In this study, we investigated the contribution of gene expression changes of various genes on the increased fitness of the ptxP3 strains. Using genome-wide gene expression profiling, we show that several virulence genes had higher expression levels in the ptxP3 strains compared to the ptxP1 strains. We provide the first evidence that wildtype ptxP3 strains are better colonizers in an intranasal mouse infection model. This study shows that the ptxP3 mutation and the genetic background of ptxP3 strains affect fitness by contributing to the ability to colonize in a mouse infection model. These results show that the genetic background of ptxP3 strains with a higher expression of virulence genes contribute to increased fitness.  相似文献   

18.
Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite very high vaccine coverage, pertussis has reemerged as a serious threat in the United States and many developing countries. Thus, it is important to pursue research to discover unknown pathogenic mechanisms of B. pertussis. We have investigated a previously uncharacterized locus in B. pertussis, the dra locus, which is homologous to the dlt operons of Gram-positive bacteria. The absence of the dra locus resulted in increased sensitivity to the killing action of antimicrobial peptides (AMPs) and human phagocytes. Compared to the wild-type cells, the mutant cells bound higher levels of cationic proteins and peptides, suggesting that dra contributes to AMP resistance by decreasing the electronegativity of the cell surface. The presence of dra led to the incorporation of d-alanine into an outer membrane component that is susceptible to proteinase K cleavage. We conclude that dra encodes a virulence-associated determinant and contributes to the immune resistance of B. pertussis. With these findings, we have identified a new mechanism of surface modification in B. pertussis which may also be relevant in other Gram-negative pathogens.  相似文献   

19.
For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects'' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels.  相似文献   

20.
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号