首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
It is known that human muscle acylphosphatase (AcP) is able, under appropriate conditions in vitro, to aggregate and form amyloid fibrils of the type associated with human diseases. A number of compounds were tested for their ability to bind specifically to the native conformation of AcP under conditions favoring denaturation and subsequent aggregation and fibril formation. Compounds displaying different binding affinities for AcP were selected and their ability to inhibit protein fibrillization in vitro was evaluated. We found that compounds displaying a relatively high affinity for AcP are able to significantly delay protein fibrillization, mimicking the effect of stabilizing mutations; in addition, the effectiveness of such outcome correlates positively to both ligand concentration and affinity to the native state of AcP. By contrast, the inhibitory effect of ligands on AcP aggregation disappears in a mutant protein in which such binding affinity is lost. These results indicate that the stabilization of the native conformation of amyloidogenic proteins by specific ligand binding can be a strategy of general interest to inhibit amyloid formation in vivo.  相似文献   

2.
The native state of human muscle acylphosphatase (AcP) presents two alpha-helices. In this study we have investigated folding and aggregation of a number of protein variants having mutations aimed at changing the propensity of these helical regions. Equilibrium and kinetic measurements of folding indicate that only helix-2, spanning residues 55-67, is largely stabilized in the transition state for folding therefore playing a relevant role in this process. On the contrary, the aggregation rate appears to vary only for the variants in which the propensity of the region corresponding to helix-1, spanning residues 22-32, is changed. Mutations that stabilize the first helix slow down the aggregation process while those that destabilize it increase the aggregation rate. AcP variants with the first helix destabilized aggregate with rates increased to different extents depending on whether the introduced mutations also alter the propensity to form beta-sheet structure. The fact that the first alpha-helix is important for aggregation and the second helix is important for folding indicates that these processes are highly specific. This partitioning does not reflect the difference in intrinsic alpha-helical propensities of the two helices, because helix-1 is the one presenting the highest propensity. Both processes of folding and aggregation do not therefore initiate from regions that have simply secondary structure propensities favorable for such processes. The identification of the regions involved in aggregation and the understanding of the factors that promote such a process are of fundamental importance to elucidate the principles by which proteins have evolved and for successful protein design.  相似文献   

3.
Gamma crystallin is one of three structural proteins present in great abundance in the fiber cells of the vertebrate eye lens. The protein displays a tendency to aggregate readily in the course of heating, cooling, being exposed to ultraviolet radiation, or rapid refolding. To investigate the molecular mechanisms underlying such aggregation, we have employed a peptide-scanning approach aimed at identifying regions of bovine gamma-II crystallin that may be involved in intermolecular interactions leading to aggregation, using assays that measure the competitive inhibition of such aggregation by reagents drawn from a group of contiguous (overlapping) peptides derived from the sequence of the protein itself. Our results suggest that two regions, comprising residues 61-74, and 145-159, play key roles in aggregative interactions. Intriguingly, the two regions (each containing a solvent-exposed, single-turn helix in the native structure) are located in structurally analogous positions in the two homologous double Greek key (beta sheet) domains of the protein, suggesting that helix-strand conversions may operate to facilitate intermolecular beta sheet interactions during aggregation.  相似文献   

4.
5.
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of the native protein, where most of the native interactions are partially established. The transition state of AcP turns out to be remarkably similar in structure to that of the activation domain of procarboxypeptidase A2 (ADA2h), a protein having the same overall topology but sharing only 13% sequence identity with AcP. This suggests that transition states are conserved between proteins with the same native fold. Comparison of the rates of folding of AcP and four other proteins with the same topology, including ADA2h, supports the concept that the average distance in sequence between interacting residues (that is, the contact order) is an important determinant of the rate of protein folding.  相似文献   

6.
Protein misfolding and aggregation are interconnected processes involved in a wide variety of nonneuropathic, systemic, and neurodegenerative diseases. More generally, if mutations in sequence or changes in environmental conditions lead to partial unfolding of the native state of a protein, it will often aggregate, sometimes into well-defined fibrillar structures. A great deal of interest has been directed at discovering the characteristic features of metastable partially unfolded states that precede the aggregated states of proteins. In this work, human muscle acylphosphatase (AcP) has been first destabilized, by addition of urea or by means of elevated temperatures, and then incubated in the presence of different concentrations of 2,2,2, trifluoroethanol ranging from 5% to 25% (v/v). The results show that AcP is able to form both fibrillar and nonfibrillar aggregates with a high beta-sheet content from partially unfolded states with very different structural features. Moreover, the presence of alpha-helical structure in such a state does not appear to be a fundamental determinant of the ability to aggregate. The lack of ready aggregation under some of the conditions examined here is attributable primarily to the intrinsic properties of the solutions rather than to specific structural features of the partially unfolded states that precede aggregation. Aggregation appears to be favored when the solution conditions promote stable intermolecular interactions, particularly hydrogen bonds. In addition, the structures of the resulting aggregates are largely independent of the conformational properties of their soluble precursors.  相似文献   

7.
Single-molecule manipulation methods provide a powerful means to study protein transitions. Here we combined single-molecule force spectroscopy and steered molecular-dynamics simulations to study the mechanical properties and unfolding behavior of the small enzyme acylphosphatase (AcP). We find that mechanical unfolding of AcP occurs at relatively low forces in an all-or-none fashion and is decelerated in the presence of a ligand, as observed in solution measurements. The prominent energy barrier for the transition is separated from the native state by a distance that is unusually long for α/β proteins. Unfolding is initiated at the C-terminal strand (βT) that lies at one edge of the β-sheet of AcP, followed by unraveling of the strand located at the other. The central strand of the sheet and the two helices in the protein unfold last. Ligand binding counteracts unfolding by stabilizing contacts between an arginine residue (Arg-23) and the catalytic loop, as well as with βT of AcP, which renders the force-bearing units of the protein resistant to force. This stabilizing effect may also account for the decelerated unfolding of ligand-bound AcP in the absence of force.  相似文献   

8.
Calamai M  Taddei N  Stefani M  Ramponi G  Chiti F 《Biochemistry》2003,42(51):15078-15083
A potentially amyloidogenic protein has to be at least partially unfolded to form amyloid aggregates. However, aggregation of the partially or totally unfolded state of a protein is modulated by at least three other factors: hydrophobicity, propensity to form secondary structure, and net charge of the polypeptide chain. We propose to evaluate the relative importance of net charge, as opposed to the other factors, on protein aggregation and amyloidogenicity. For this aim, we have used two homologous proteins that were previously shown to be able to form amyloid fibrils in vitro, the N-terminal domain of HypF from Escherichia coli (HypF-N) and human muscle acylphosphatase (AcP). The aggregation process from an ensemble of partially unfolded conformations is ca. 1000-fold faster for HypF-N than for AcP. This difference can mainly be attributed to a higher hydrophobicity and a lower net charge for HypF-N than for AcP. By using protein engineering methods, we have decreased the net charge of AcP to a value identical to that of wild-type HypF-N and increased the net charge of HypF-N to a value identical to that of wild-type AcP. Amino acid substitutions were selected to minimize changes in hydrophobicity and secondary structure propensities. We were able to estimate that the difference in net charge between the two wild-type proteins contributes to 20-25% of the difference in their aggregation rates. An understanding of the relative influences of these forces in protein aggregation has implications for elucidating the complexity of the aggregation process, for predicting the effect of natural mutations, and for accurate protein design.  相似文献   

9.
Simulations of reversible protein aggregate and crystal structure.   总被引:2,自引:1,他引:1       下载免费PDF全文
We simulated the structure of reversible protein aggregates as a function of protein surface characteristics, protein-protein interaction energies, and the entropic penalty accompanying the immobilization of protein in a solid phase. These simulations represent an extension of our previous work on kinetically irreversible protein aggregate structure and are based on an explicit accounting of the specific protein-protein interactions that occur within reversible aggregates and crystals. We considered protein monomers with a mixture of hydrophobic and hydrophilic surface regions suspended in a polar solvent; the energetic driving force for aggregation is provided by the burial of solvent-exposed hydrophobic surface area. We analyzed the physical properties of the generated aggregates, including density, protein-protein contact distributions, solvent accessible surface area, porosity, and order, and compared our results with the protein crystallization literature as well as with the kinetically irreversible case. The physical properties of reversible aggregates were consonant with those observed for the irreversible aggregates, although in general, reversible aggregates were more stable energetically and were more crystal-like in their order content than their irreversible counterparts. The reversible aggregates were less dense than the irreversible aggregates, indicating that the increased energetic stability is derived primarily from the optimality rather than the density of the packing in the solid phase. The extent of hydrophobic protein-protein contacts and solvent-exposed surface area within the aggregate phase depended on the aggregation pathway: reversible aggregates tended to have a greater proportion of hydrophobic-hydrophobic contacts and a smaller fraction of hydrophobic solvent-exposed surface area. Furthermore, the arrangement of hydrophobic patches on the protein surface played a major role in the distribution of protein contacts and solvent content. This was readily reflected in the order of the aggregates: the greater the contiguity of the hydrophobic patches on the monomer surface, the less ordered the aggregates became, despite the opportunities for rearrangement offered by a reversible pathway. These simulations have enhanced our understanding of the impact of protein structural motifs on aggregate properties and on the demarcation between aggregation and crystallization.  相似文献   

10.
The folding process of the acylphosphatase from Sulfolobus solfataricus (Sso AcP) has been followed, starting from the fully unfolded state, using a variety of spectroscopic probes, including intrinsic fluorescence, circular dichroism, and ANS binding. The results indicate that an ensemble of partially folded or misfolded species form rapidly on the submillisecond time scale after initiation of folding. This conformational ensemble produces a pronounced downward curvature in the Chevron plot, appears to possess a content of secondary structure similar to that of the native state, as revealed by far-UV circular dichroism, and appears to have surface-exposed hydrophobic clusters, as indicated by the ability of this ensemble to bind to 8-anilino-1-naphthalenesulfonic acid (ANS). Sso AcP folds from this conformational state with a rate constant of ca. 5 s(-1) at pH 5.5 and 37 degrees C. A minor slow exponential phase detected during folding (rate constant of 0.2 s(-1) under these conditions) is accelerated by cyclophilin A and is absent in a mutant of Sso AcP in which alanine replaces the proline residue at position 50. This indicates that for a lower fraction of Sso AcP molecules the folding process is rate-limited by the cis-trans isomerism of the peptide bond preceding Pro50. A comparative analysis with four other homologous proteins from the acylphosphatase superfamily shows that sequence hydrophobicity is an important determinant of the conformational stability of partially folded states that may accumulate during folding of a protein. A low net charge and a high propensity to form alpha-helical structure also emerge as possibly important determinants of the stability of partially folded states. A significant correlation is also observed between folding rate and hydrophobic content of the sequence within this superfamily, lending support to the idea that sequence hydrophobicity, in addition to relative contact order and conformational stability of the native state, is a key determinant of folding rate.  相似文献   

11.
Kinetic partitioning of protein folding and aggregation.   总被引:1,自引:0,他引:1  
We have systematically studied the effects of 40 single point mutations on the conversion of the denatured form of the alpha/beta protein acylphosphatase (AcP) into insoluble aggregates. All the mutations that significantly perturb the rate of aggregation are located in two regions of the protein sequence, residues 16-31 and 87-98, each of which has a relatively high hydrophobicity and propensity to form beta-sheet structure. The measured changes in aggregation rate upon mutation correlate with changes in the hydrophobicity and beta-sheet propensity of the regions of the protein in which the mutations are located. The two regions of the protein sequence that determine the aggregation rate are distinct from those parts of the sequence that determine the rate of protein folding. Dissection of the protein into six peptides corresponding to different regions of the sequence indicates that the kinetic partitioning between aggregation and folding can be attributed to the intrinsic conformational preferences of the denatured polypeptide chain.  相似文献   

12.
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins.  相似文献   

13.
Folded proteins can access aggregation-prone states without the need for transitions that cross the energy barriers for unfolding. In this study we characterized the initial steps of aggregation from a native-like state of the acylphosphatase from Sulfolobus solfataricus (Sso AcP). Using computer simulations restrained by experimental hydrogen/deuterium (H/D) exchange data, we provide direct evidence that under aggregation-promoting conditions Sso AcP populates a conformational ensemble in which native-like structure is retained throughout the sequence in the absence of local unfolding (N1), although the protein exhibits an increase in hydrodynamic radius and dynamics. This transition leads an edge strand to experience an increased affinity for a specific unfolded segment of the protein. Direct measurements by means of H/D exchange rates, isothermal titration calorimetry, and intermolecular relaxation enhancements show that after formation of N1, an intermolecular interaction with an antiparallel arrangement is established between the edge strand and the unfolded segment of the protein. However, under conditions that favor the fully native state of Sso AcP, such an interaction is not established. Thus, these results reveal a novel (to our knowledge) self-assembly mechanism for a folded protein that is based on the increased flexibility of highly aggregation-prone segments in the absence of local unfolding.  相似文献   

14.
The native state of common-type acylphosphatase (AcP) elicits two alpha-helices spanning residues 22-32 and 55-67 in the protein sequence. A peptide corresponding to the second alpha-helix (helix-2) of the protein was used to select phage antibodies consisting of a single chain fragment variable. The selection was performed in the presence of trifluoroethanol, a cosolvent known to induce the formation of helical structure in peptides and proteins. Phage scFv antibodies capable of binding the peptide specifically in a trifluoroethanol-induced alpha-helical conformation were isolated by affinity selection (biopanning). Some of these scFvs were also able to bind the native protein but not the peptide in a non-helical unstructured state. This indicates that the structural determinant recognized by the selected antibodies is the alpha-helical conformation of this specific region, rather than simply its amino acid sequence. This study shows that phage display libraries can be used to raise antibodies one can use as reagents able to target regions of a protein with a specific native-like secondary structure.  相似文献   

15.
Protein aggregation is associated with a number of human pathologies including Alzheimer's and Creutzfeldt-Jakob diseases and the systemic amyloidoses. In this study, we used the acylphosphatase from the hyperthermophilic Archaea Sulfolobus solfataricus (Sso AcP) to investigate the mechanism of aggregation under conditions in which the protein maintains a folded structure. In the presence of 15-25% (v/v) trifluoroethanol, Sso AcP was found to form aggregates able to bind specific dyes such as thioflavine T, Congo red, and 1-anilino-8-naphthalenesulfonic acid. The presence of aggregates was confirmed by circular dichroism and dynamic light scattering. Electron microscopy revealed the presence of small aggregates generally referred to as amyloid protofibrils. The monomeric form adopted by Sso AcP prior to aggregation under these conditions retained enzymatic activity; in addition, folding was remarkably faster than unfolding. These observations indicate that Sso AcP adopts a folded, although possibly distorted, conformation prior to aggregation. Most important, aggregation appeared to be 100-fold faster than unfolding under these conditions. Although aggregation of Sso AcP was faster at higher trifluoroethanol concentrations, in which the protein adopted a partially unfolded conformation, these findings suggest that the early events of amyloid fibril formation may involve an aggregation process consisting of the assembly of protein molecules in their folded state. This conclusion has a biological relevance as globular proteins normally spend most of their lifetime in folded structures.  相似文献   

16.
Yan YB  Wang Q  He HW  Zhou HM 《Biophysical journal》2004,86(3):1682-1690
Protein thermal aggregation plays a crucial role in protein science and engineering. Despite its biological importance, little is known about the mechanism and pathway(s) involved in the formation of aggregates. In this report, the sequential events occurring during thermal unfolding and aggregation process of hemoglobin were studied by two-dimensional infrared correlation spectroscopy. Analysis of the infrared spectra recorded at different temperatures suggested that hemoglobin denatured by a two-stage thermal transition. At the initial structural perturbation stage (30-44 degrees C), the fast red shift of the band from alpha-helix indicated that the native helical structures became more and more solvent-exposed as temperature increased. At the thermal unfolding stage (44-54 degrees C), the unfolding of solvent-exposed helical structures dominated the transition and was supposed to be responsible to the start of aggregation. At the thermal aggregation stage (54-70 degrees C), the transition was dominated by the formation of aggregates and the further unfolding of the buried structures. A close inspection of the sequential events occurring at different stages suggested that protein thermal aggregation involves distinct regions.  相似文献   

17.
Separation of full-length protein from proteolytic products is challenging, since the properties used to isolate the protein can also be present in proteolytic products. Many separation techniques risk non-specific protein adhesion and/or require a lot of time, enabling continued proteolysis and aggregation after lysis. We demonstrate that proteolytic products aggregate for two different proteins. As a result, full-length protein can be rapidly separated from these fragments by filter flow-through purification, resulting in a substantial protein purity enhancement. This rapid approach is likely to be useful for intrinsically disordered proteins, whose repetitive sequence composition and flexible nature can facilitate aggregation.  相似文献   

18.
In response to stress small organic compounds termed osmolytes are ubiquitously accumulated in all cell types to regulate the intracellular solvent quality and to counteract the deleterious effect on the stability and function of cellular proteins. Given the evidence that destabilization of the native state of a protein either by mutation or by environmental changes triggers the aggregation in the neurodegenerative pathologies, the modulation of the intracellular solute composition with osmolytes is an attractive strategy to stabilize an aggregating protein. Here we report the effect of three natural osmolytes on the in vivo and in vitro aggregation landscape of huntingtin exon 1 implicated in the Huntington's disease. Trimethylamine N-oxide (TMAO) and proline redirect amyloid fibrillogenesis of the pathological huntingtin exon 1 to nonamyloidogenic amorphous assemblies via two dissimilar molecular mechanisms. TMAO causes a rapid formation of bulky amorphous aggregates with minimally exposed surface area, whereas proline solubilizes the monomer and suppresses the accumulation of early transient aggregates. Conversely, glycine-betaine enhances fibrillization in a fashion reminiscent of the genesis of functional amyloids. Strikingly, none of the natural osmolytes can completely abrogate the aggregate formation; however, they redirect the amyloidogenesis into alternative, nontoxic aggregate species. Our study reveals new insights into the complex interactions of osmoprotectants with polyQ aggregates.  相似文献   

19.
An efficient protein‐folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally‐induced aggregate of fibroblast growth factor‐1 (FGF‐1), a small globular protein, by solid‐state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF‐1 also indicate the presence of unstructured regions that exhibit hydration‐dependent dynamics and suggest that unstructured regions of aggregated FGF‐1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF‐1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria – the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.  相似文献   

20.
Maltose binding protein (MBP) is widely used as a model for protein folding and export studies. We show here that macroscopic aggregates form transiently during the refolding of MBP at micromolar protein concentrations. Disaggregation occurs spontaneously without any aid, and the refolded material has structure and activity identical to those of the native, nondenatured protein. A considerable fraction of protein undergoing folding partitions into the aggregate phase and can be manually separated from the soluble phase by centrifugation. The separated MBP precipitate can be resolubilized and yields active, refolded protein. This demonstrates that both the soluble and aggregate phases contribute to the final yield of refolded protein. SecB, the cognate Escherichia coli cytosolic chaperone in vivo for MBP, reduces but does not entirely prevent aggregation, whereas GroEL and a variety of other control proteins have no effect. Kinetic studies using a variety of spectroscopic probes show that aggregation occurs through a collapsed intermediate with some secondary structure. The aggregate formed during refolding can convert directly to a near native state without going through the unfolded state. Further, optical and electron microscopic studies indicate that the MBP precipitate is not an amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号