首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maturation of somatic embryos of Anthurium andraeanum cv. Eidibel from embryogenic callus was evaluated. Following induction of embryogenic calli from nodal segments, tissues were transferred to 125-mL Erlenmeyer flasks containing 25 mL liquid medium, with 0, 4.52, or 9.05 μM 2,4-dichlorophenoxyacetic acid and 0, 0.47, or 2.32 μM kinetin. Callus cultures were maintained in a dark growth room at 25?±?2°C. At 45 d, the mass of embryogenic calli, number of primary and secondary somatic embryos, and percentage browning were evaluated. Nonparametric tests were used to evaluate color, texture, and somatic embryo development. The highest yield of somatic embryos was in the medium with 0.47 μM kinetin. Calli were friable, with a lower yield of secondary somatic embryos, and have minimal browning. Histology revealed polar globular somatic embryos and mature somatic embryos with defined apical and root meristematic zones, axillary buds, and primary leaves. These are important features for converting somatic embryos into plantlets.  相似文献   

3.
4.
Amplified fragment-length polymorphism (AFLP) was used to evaluate the stability of DNA in regenerated plantlets of Coffea arabica obtained by direct (DSE) and indirect somatic embryogenesis (ISE). Cluster analysis using the unweighted pair-group method (UPGMA), showed no specific grouping pattern related to the type of embryogenesis. These results suggest that the somatic embryogenesis (SE) process has a mechanism for the selection of normal and competent cells. Bulked DNA from regenerated plants obtained by DSE and ISE, and from the mother plants, was used to characterize specific AFLP fragments associated with each SE process. Twenty-three primer combinations were tested. A total of 1446 bands were analyzed, with 11.4% being polymorphic and 84% being specific for regenerated plants. Furthermore, specific bands were detected for DSE, ISE, and the mother plants. These results indicate that the SE process induces rearrangements at the DNA level and demonstrates discrepancies between the mechanisms involved in each SE process. Coffea arabica breeding programs that involve DSE and ISE can use AFLP as an additional tool for assessing DNA stability.  相似文献   

5.
6.
To evaluate genetic homogeneity of 1-year-old guava (Psidium guajava L.) plants developed from in vitro somatic embryogenesis, DNA from leaf tissues of seven randomly selected plants along with the mother plant, was isolated and subjected to molecular analysis. A total of six Simple Sequence Repeat (SSR) primer pairs, producing reproducible and clear bands ranging from 100 to 300?bp in size, resulted in amplification of single band (allele), corresponding homozygous individuals. Moreover, of 10 different inter-simple sequence repeat (ISSR) primers screened, six produced resolvable, reproducible and scorable bands. All these ISSRs produced a total of 25 bands, ranging between 300 and 1,200?bp length, and the number of scorable bands, for each primer varied from three to six with an average of 4.1 bands per primer. The amplification products were monomorphic across all the micropropagated plants produced by all SSR and ISSR primers applied. The monomorphic banding pattern in micropropagated plants and the mother plant confirms the genetic homogeneity of the in vitro raised plants and demonstrates the reliability of our in vitro propagation system for guava.  相似文献   

7.
Plant regeneration has been achieved by somatic embryogenesis in Medicago truncatula Gaertn. (barrel medic) c.v. Jemalong, an annual legume species. Regenerated plants were obtained from cultured leaf tissue explants on a four-step modified B5 basal medium. Induction of embryo formation occurred on a medium containing 10 M NAA and 10 M BAP, and embryo maturation was promoted after transfer to a medium containing 1 M NAA and 10 M BAP. Shoot development, secondary somatic embryogenesis and occasional plantlet development occurred on a subsequent transfer to 0.1 M NAA and 1 M BAP. Plantlet formation could also be completed by transfer of well developed shoots to 0.05 M NAA. A high frequency of primary somatic embryos could only be obtained by using the same culture protocol with tissue from regenerated plants. Explants from regenerated plants showed a large increase in the number of primary embryos per callus and the number of calli producing embryos. Explants from plants derived from the seed of one regenerated plant also showed increased embryo formation. Although high embryo formation rates can be reproducibly obtained from this seed, embryo conversion rates to plants are currently low.Abbreviations BAP 6-benzylaminopurine - B5 medium of Gamborg et al. 1968 - 2,4-D 2,4-dichlorophenoxyacetic acid - MS medium of Murashige and Skoog 1962 - NAA 1-naphthaleneacetic acid  相似文献   

8.
Somatic embryogenesis was induced from in vivo grown leaf explants of Chrysanthemum cv. Euro incubated on Murashige and Skoog (MS) medium supplemented with 2.0 mg/L 2,4-dichlorophenoxyacetic acid and 2.0 mg/L Kinetin, yielding the highest mean number of embryos (42 ± 5.97) per explant after 5 weeks of culture. We evaluated the effects of basal medium, various concentrations of sucrose, and timentin on the proliferation of secondary somatic embryos. MS medium was observed to be the more effective in promoting the proliferation of somatic embryos than half-strength Murashige and Skoog (1/2MS). In addition, timentin was also more efficient in induction of secondary embryogenesis than sucrose. Whole plantlets were obtained by culturing of secondary embryos on hormone-free MS medium and successfully acclimated in the green house.  相似文献   

9.
In Vitro Cellular & Developmental Biology - Plant - A highly efficient regeneration system of Anthurium andraeanum Linden was established using root segments as explants of four genotypes,...  相似文献   

10.
11.
Summary A procedure for the regeneration of complete plantlets of Tylophora indica from cultured leaf callus via somatic embryogenesis is described. Callus induction from leaf explants was on Murashige and Skoog (MS) medium with different concentrations of 2,4-dichlorophenoxyacetic acid (2.4-D; 0.03–3 mg l−1; 0.0–13.56 μM) and kinetin (Kn; 0.01 mg l−1; 0.05 μM). The best response for callus induction was obtained on MS medium containing 2 mg l−1 (9.04 μM) 2.4-D and 0.01 mg l−1 (0.05 μM) Kn. After two subeultures on the same medium the embryogenic callus was transferred to MS medium with different concentrations of the cytokinin, 6-benzyladenine (0.5–3 mg l−1; 2.22–13.32 μM) and 2-isopentenyladenine (2ip; 0.53 mg l−1; 2.46–14.76 μM) along with 0.01 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for somatic embryo development and maturation. MS medium with 2 mg l−1 (9.84 μM) 2ip produced the maximum number of mature somatic embryos. The mature embryos were bipolar and on transfer to MS basal medium produced complete plantlets. After hardening the regenerants were planted in the Gudalur forests of Western Ghats. Total DNA was extracted from 14 regenerants and the mother plant. Random amplified polymorphic, DNA (RAPD) analysis was carried out using 20 arbitrary oligonucleotides. The amplification products were monomorphic among all the plants revealing the genetic homogeneity and true-to-type nature of the regenerants.  相似文献   

12.
Plants were regenerated by somatic embryogenesis from endosperm tissue of open-pollinated seeds of Juglans regia L. cv Manregian. These plants were obtained by growing endosperm tissue on media similar to those used for plant regeneration from walnut cotyledons (Tulecke and McGranahan 1985). The plants appear morphologically uniform and have a triploid chromosome number of 3n=48. Nine plants have been grown to a young sapling stage in soil. This embryogenic line from endosperm has been maintained in culture for two years by the process of repetitive somatic embryogenesis.  相似文献   

13.
Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer‐preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)‐mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild‐type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2‐type varieties TME 3 and TME 7, but the CMD1‐type cultivar TMS 30572 and the CMD3‐type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2‐mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field‐level resistance in CMD2‐type cultivars presently grown by farmers in East Africa, where CMD pressure is high.  相似文献   

14.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

15.
To establish an efficient regeneration protocol for functional validation and variety resistance improvement, a long-term system that useful for embryogenic culture maintenance and transformation was developed through recurrent cycles of secondary embryogenesis from Vitis vinifera L. cv. Thompson Seedless. Three media and five types of somatic embryo in secondary embryogenesis were evaluated. Somatic embryos (SE) in the torpedo and mid-cotyledonary stages gave the best embryogenic responses with re-induction rates of about 80 %. Embryogenic callus, proembryonic masses and SE produced in the system, could be propagated for over 3 years and all proved competent for Agrobacterium-mediated transformation. Based on this system, different transgenic selection regimes were compared. Addition of kanamycin at 4 weeks after co-cultivation was optimal for embryo recovery. Plant conversion was improved by alternating culture on two media: one containing 0.2 mg l?1 BA and the other 0.25 mg l?1 kinetin. To further test the efficiency of the system, a ubiquitin ligase gene (VpPUB23) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. Of the 351 transgenic plants obtained, those overexpressing VpPUB23 exhibited decreased resistance to powdery mildew compared with non-transgenic plants.  相似文献   

16.
Somatic embryogenesis was induced in callus tissues derived from young flower buds ofPanax notoginseng via callus within 18 weeks of culture. The mature somatic embryos were germinated on half-strength Murashige and Skoog's (MS) medium supplemented with gibberellic acid A3(GA) and 6-benzyladenine (BA). The most suitable medium for optimal root formation proved to be MS medium supplemented with 1-naphthaleneacetic acid (NAA). Total DNA was extracted from the leaves of the regenerated plantlets ofP. notoginseng. Analysis of random-amplified polymorphic DNA (RAPD) using 21 arbitrary oligonucleotide 10-mers, showed the genetic homogeneity ofP. notoginseng. The amplification products were monomorphic for all of the plantlets ofP. notoginseng regenerated by embryogenesis, suggesting that somatic embryogenesis can be used for clonal micropropagation of this plant.  相似文献   

17.
18.
Summary Direct plant regeneration from flowering plant-derived lamina explants of Anthurium andraeanum Hort. cultivars Tinora Red and Senator was established on modified Murashige and Skoog (MS) medium. Cultivar difference, stage of source lamina and the position of explant in lamina, medium pH, and type of growth regulators significantly influenced direct plant regeneration. Explants from young brown lamina were superior to young green lamina. The half-strength MS medium containing 1.11 μM N6-benzyladenine (BA), 1.14 μM indole-3-acetic acid, and 0.46 μM kinetin at pH 5.5 was most effective for induction of shoot formation. Explants from the proximal end of the source lamina gave rise to a higher number of shoots compared to the mid and distal regions. Cultivar Tinora Red was more regenerative than Senator in terms of number of shoots per explant. The use of a lower BA concentration (0.44 μM) was essential for callus-free shoot multiplication during subculture. Regenerated shoots could be induced to form roots on half-strength MS medium supplemented with 0.54 μM α-naphthaleneacetic acid and 0.93 μM kinetin. More than 300 plantlets of each eultivar were harvested from a single source lamina within 200 d of culture. Most plantlets (95%) survived after acclimation in soil.  相似文献   

19.
Summary We have developed efficient methods for plant regeneration, via both embryogenesis and organogenesis, of Smooth Cayenne pineapple, Ananas comosus (L.) Merr. Leaf bases and core (stem) sections of in vitro shoots, produced from culture of crown tip meristem, were used as explants for plant regeneration as follows: (1) Leaf base and core section explants cultured on Murashige and Skoog (MS) medium containing 41 μM 4-amino-3,5,6-trichloropicolinic acid (picloram, P) or thidiazuron (T)/P combinations produced embryogenic tissues. Different types of embryogenic tissues (friable emryogenic tissue, embryogenic cell cluster, and chunky embryogenic tissue) have been developed with varying properties in terms of growth rate and state of development. The embryogenic tissues regenerated shoots upon culture on MS medium containing 13 μM 6-benzylaminopurine (BA) and 1μM α-naphthaleneacetic acid (NAA) followed by culture on MS medium containing 4 μM BA. (2) Crown tip meristems cultured on MS medium containing 13 μM BA followed by leaf explants cultured on MS medium with 27 μM NAA and 1 μM BA produced shoots via direct organogenesis. (3) Explants cultured on MS medium containing 5 μM T and 0.5 μM indole-3-butyric acid (IBA) produced nodular globular structures, which produced shoots upon culture on MS medium containing 1 μM BA and 1 μM gibberellic acid. Shoots obtained from all of the above methods were rooted in half-strength MS medium containing 3 μM NAA and 2.5 μM IBA. Plants were transferred to the greenhouse or shipped to Costa Rica for field trials. Somatic embryo-derived plants exhibited 21 % spininess, and organogenic-derived plants exhibited 5% spininess in the field trials.  相似文献   

20.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号