首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

2.
Initial rate kinetic studies with bovine liver fructose-1,6-bisphosphatase were carried out in both directions of the reaction to determine the sequence of product release from the enzyme. Product inhibition by fructose-6-P was found to be S-linear, I-linear noncompetitive relative to fructose-1,6-bisphosphate, whereas inorganic orthophosphate was determined to be linear competitive with respect to the substrate. The kinetics of the reverse reaction were studied by coupling the phosphatase reaction to the aldolase, triosephosphate isomerase, and glycerolphosphate dehydrogenase reactions. The kinetic results were found to be in harmony with the Uni Bi ordered and random sequential mechanisms as well as a Uni Bi ping-pong mechanism. The nomenclature is that of Cleland (Cleland, W.W. (1963) Biochim. Biophys. Acta 67, 104-137). However, nonkinetic considerations, when taken together with the kinetic results, suggest that the steady state ordered Uni Bi mechanism is the most likely possibility. There is evidence that isomerization of the binary complex of enzyme and phosphate occurs in the kinetic mechanism. Although magnesium is required for the reverse reaction, there is no evidence to suggest that the enzyme discriminates between the magnesium-associated or divalent cation-free forms of the substrates.  相似文献   

3.
At pH 6.3 both the native and subtilisin-digested fructose-1,6-bisphosphatase (Fru-P2-ase) molecules exhibit four fast-reacting thiol groups. The kinetic analysis shows that the pK value for the reaction of these thiols is 8.1. The increase of pH from 6.3 to 9.3 results in an uncovering of the remaining 20 thiol groups. In subtilisin-cleaved enzyme the rate of reaction of SH groups is considerably higher than in the native enzyme at pH 9.3, indicating changes in the microenvironments around thiols upon modification. A fluorescent label inserted on a fast-reacting SH group and neighboring NH2 group shifts the pH optimum of the enzyme to alkaline region and decreases its sensitivity toward AMP. Spectral analysis of labeled enzyme indicates that the labeled region of protein is more hydrophilic upon proteolytic digestion. It is concluded that a molecule of subtilisin-digested enzyme has a more relaxed structure than the native enzyme. The relaxation of the enzyme to a new conformation is reflected by urea addition, which mimics the effect of subtilisin digestion. Correlation of enzyme activity versus its sensitivity toward AMP (I 0.5), shows that at low concentrations of urea the active-site region at pH 6.3 is more affected than the region of AMP binding.  相似文献   

4.
D Neuser  P Bellemann 《FEBS letters》1986,200(2):347-351
Treatment of chicken liver fructose-1,6-bisphosphatase with oxidized glutathione (GSSG) leads to an increase in activity. This activation is markedly enhanced if treatment is performed in the presence of AMP or Mn2+. The effects of AMP and Mn2+ appear to be synergistic. The maximal activation is over 13-fold and is accompanied by the disappearance of 4 sulfhydryl groups per molecule of enzyme. Both fructose 1,6-bisphosphate and fructose 2,6-bisphosphate can largely prevent this activation. Activation can be reversed by dithiothreitol or cysteine. It appears that GSSG activates this enzyme by thiol/disulfide exchanges with the enzyme's specific sulfhydryl groups.  相似文献   

5.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

6.
7.
No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase.  相似文献   

8.
9.
Denaturation of fructose-1,6-bisphosphatase (Fru-P2-ase, EC 3.1.3.11) by urea and renaturation of denatured enzyme has been investigated. Denaturation lowers the specific activity of the enzyme but even at 8 M urea concentration in the presence of sucrose the activity of the enzyme is detectable. Centrifugation of the enzyme in a sucrose density gradient at 4 M urea reveals one peak of protein corresponding to a dimer. Denaturation increases intensity of intrinsic fluorescence of Fru-P2-ase and causes a red shift of fluorescence peak of the thioisoindole derivative of the enzyme. Renaturation of the denatured enzyme followed as the reappearance of enzymatic activity in the presence and absence of bovine serum albumin (BSA) is characterised by first order kinetics, k = 1.78 X 10(-3) s-1. The presence of BSA does not affect the rate of renaturation but perceptibly increases the recovery of enzymatic activity. A 100% recovery of Fru-P2-ase activity is observed at 0.5 micrograms/mL concentration of the enzyme and 2 mg/mL of BSA.  相似文献   

10.
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.  相似文献   

11.
A substance in the crude preparation of NADP+ has been found,which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5.After isolation and extensive characterization,the substance has been determined to be AMP.The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L.In the presence of AMP,snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme.Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme.AMP releases the inhibition of Mg2+ at high concentration at alkaline pH.It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis.AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme.This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significance in physiological regulation.  相似文献   

12.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP.  相似文献   

13.
Effects of monovalent cations on the neutral rabbit liver fructose-1,6-bisphosphatase are multifunctional and dependent on their nonhydrated ionic size. (a) The maximal velocity is increased by addition of monovalent cations with the optimum stimulation occurring with a nonhydrated ionic radius of 1.2 A in the presence of a chelating agent such as EDTA. (B) Activation curves are sigmoidal with n values varying from 1.5 to 2.3 as ionic radius of monovalent cation increases. The apparent Ka values from 16.0 to 180 mM, obtained for various monovalent cations, have a linear relationship to ionic radii of cations. (c) At lower concentrations of fructose 1,6-bisphosphate monovalent cations show the inhibitory effect and the apparent Km for fructose 1,6-bisphosphate is increased as the concentration of monovalent cation is increased. A linear relationship is obtained between the slopes of increase in the Km and the reciprocals of ionic volume of monovalent cations. (d) The apparent Ka for Mg2+ is also increased as the concentration of monovalent cation is increased, and a linear relationship is obtained again between the increases in Ka and the reciprocals of ionic volume of monovalent cations. The cooperative nature for Mg2+ saturation is decreased as the Ka increases. (e) The apparent Ki for AMP is also linearly altered as the concentration of monovalent cation is varied. However, the alteration of the Ki is unusual, that is, the smaller cations than K+ increase the Ki (Li+ greater than Na+ greater than NH4+), whereas the larger cations decrease the value ((CH2CH2OH)3N+ greater than Cs+ greater than Rb+). The effect of K+ is insignificant. Alterations in the Ki are also linearly related to the reciprocals of ionic volume of monovalent cations. The cooperative nature for AMP inhibition is decreased or increased as the Ki increased or decreased. (f) In the absence of the chelating agent, the curves for Mg2+ saturation and AMP inhibition were hyperbolic without monovalent cations. By addition of monovalent cation the Ka for Mg+2+ or Ki for AMP is increased and cooperative natures for binding of both ligands are induced. For nonspherical monovalent cations, the application of "functional ionic radius" is proposed. Functional ionic radii of NH4+, (CH2OH)3CNH3+, and (CH2CH2OH)3N+ are estimated to be 1.17, 2.55, and 2.87 A, respectively. The presence of two distinct sites for the actions of monovalent cations is suggested.  相似文献   

14.
15.
  • 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
  • 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
  • 3.3. S0.5 for substrate was 1.4 μM.
  • 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
  • 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
  相似文献   

16.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

17.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

18.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

19.
20.
A number of agents were tested for their ability to enhance the p-hydroxylation of aniline using isolated hepatocytes as a model system. Although the observed stimulation or inhibition was not concentration dependent, various substrates for the hepatic mixed-function oxygenase (MFO) system (p-nitroanisole, 7-ethoxycoumarin, biphenyl, N,N′-dimethylaminoazobenzene, and benzphetamine) stimulated the hydroxylation at a concentration of 0.5 mm. This effect was not seen with all substrates. In general, aniline hydroxylation was not affected by the other agents tested (steroids, metabolic inhibitors and MFO inhibitors). However, enhancement was noticed with testosterone and progesterone at the lowest concentration (0.05 mm), with 2,6-dichloro-4-nitrophenol and salicylamide at 0.05 mm and 0.5 mm and with 7,8-benzoflavone at 5.0 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号