首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beside functional and structural changes in vascular biology, alterations in the rheologic properties of blood cells mainly determines to an impaired microvascular blood flow in patients suffering from diabetes mellitus. Recent investigations provide increasing evidence that impaired C-peptide secretion in type 1 diabetic patients might contribute to the development of microvascular complications. C-peptide has been shown to stimulate endothelial NO secretion by activation of the Ca2+ calmodolin regulated enzyme eNOS. NO himself has the potency to increase cGMP levels in smooth muscle cells and to activate Na+ K+ ATPase activity and therefore evolves numerous effects in microvascular regulation. In type 1 diabetic patients, supplementation of C-peptide was shown to improve endothelium dependent vasodilatation in an NO-dependent pathway in different vascular compartments. In addition, it could be shown that C-peptide administration in type 1 diabetic patients, results in a redistribution of skin blood flow by increasing nutritive capillary blood flow in favour to subpapillary blood flow. Impaired Na+ K+ ATPase in another feature of diabetes mellitus in many cell types and is believed to be a pivotal regulator of various cell functions. C-peptide supplementation has been shown to restore Na+ K+ATPase activity in different cell types during in vitro and in vivo investigations. In type 1 diabetic patients, C-peptide supplementation was shown to increase erythrocyte Na+ K+ATPase activity by about 100%. There was found a linear relationship between plasma C-peptide levels and erythrocyte Na+ K+ATPase activity. In small capillaries, microvascular blood flow is increasingly determined by the rheologic properties of erythrocytes. Using laser-diffractoscopie a huge improvement in erythrocyte deformability could be observed after C-peptide administration in erythrocytes of type 1 diabetic patients. Inhibition of the Na+ K+ATPase by Obain completely abolished the effect of C-peptide on erythrocyte deformability. In conclusion, C-peptide improves microvascular function and blood flow in type 1 diabetic patients by interfering with vascular and rheological components of microvascular blood flow.  相似文献   

2.
Asymmetric dimethylarginine (ADMA) and NG-monomethyl- L-arginine ( L-NMMA) are important endogenous endothelial nitric oxide synthase (eNOS) inhibitors. Studies have shown that patients with insulin resistance have elevated plasma levels of ADMA. Moreover, ADMA levels have a prognostic value on long-term outcome of patients with coronary artery disease. Insulin resistance, a disorder associated to inadequate biological responsiveness to the actions of exogenous or endogenous insulin, is a metabolic condition, which exists in patients with cardiovascular diseases. This disorder affects the functional balance of vascular endothelium via changes of nitric oxide (NO) metabolism. Nitric oxide is produced in endothelial cells from the substrate L-arginine via eNOS. Elevated ADMA levels cause eNOS uncoupling, a mechanism which leads to decreased NO bioavailability and increased production of hydrogen peroxide. According to clinical studies, the administration of L-arginine to patients with high ADMA levels improves NO synthesis by antagonizing the deleterious effect of ADMA on eNOS function, although in specific populations such as diabetes mellitus, this might even been harmful. More studies are required in order to certify the role of NOS inhibitors in insulin resistance and endothelial dysfunction. It is still difficult to say whether increased ADMA levels in certain populations is only a reason or the result of the molecular alterations, which take place in vascular disease states.  相似文献   

3.
Patients with insulin resistance and early type 2 diabetes exhibit an increased propensity to develop a diffuse and extensive pattern of arteriosclerosis. Typically, these patients show elevated serum levels of the proinsulin cleavage product C-peptide and immunohistochemical data from our group revealed C-peptide deposition in early lesions of these individuals. Moreover, in vitro studies suggest that C-peptide could promote atherogenesis. This study examined whether C-peptide promotes vascular inflammation and lesion development in a mouse model of arteriosclerosis. ApoE-deficient mice on a high fat diet were treated with C-peptide or control injections for 12 weeks and the effect on lesion size and plaque composition was analysed. C-peptide treatment significantly increased C-peptide blood levels by 4.8-fold without having an effect on glucose or insulin levels, nor on the lipid profile. In these mice, C-peptide deposition in atherosclerotic plaques was significantly increased compared with controls. Moreover, lesions of C-peptide-treated mice contained significantly more macrophages (1.6 ± 0.3% versus 0.7 ± 0.2% positive area; P < 0.01) and more vascular smooth muscle cells (4.8 ± 0.6% versus 2.4 ± 0.3% positive area; P < 0.01). Finally, lipid deposition measured by Oil-red-O staining in the aortic arch was significantly higher in the C-peptide group compared with controls. Our results demonstrate that elevated C-peptide levels promote inflammatory cell infiltration and lesion development in ApoE-deficient mice without having metabolic effects. These data obtained in a mouse model of arteriosclerosis support the hypothesis that C-peptide may have an active role in atherogenesis in patients with diabetes and insulin resistance.  相似文献   

4.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

5.
Rassaf T  Kleinbongard P  Kelm M 《Biological chemistry》2006,387(10-11):1347-1349
Endothelial dysfunction is an early stage of atherosclerosis and has been attributed to impaired nitric oxide (NO) bioactivity and enhanced formation of oxygen-derived free radicals. Given that endothelial dysfunction is at least in part reversible, the assessment of altered NO availability is of important diagnostic and prognostic significance. Identification of such alterations may help to target asymptomatic individuals who are at risk for cardiovascular diseases and would likely benefit from preventive measures. Focusing on a single signaling pathway, we present here a multi-level approach for the early diagnosis of cardiovascular diseases by assessing molecular, biochemical, structural, and functional changes in the vascular wall.  相似文献   

6.
Insulin resistance is a hallmark feature of type-2 diabetes mellitus (T2DM). We determined the homeostatic model assessment insulin resistance (HOMA-IR) and evaluated its association with C-peptide, insulin, fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) in T2DM patients and non-diabetic subjects. This study comprised a total of 47 T2DM patients and 38 non-diabetic controls. Venous blood samples from all the subjects were collected and sera were analyzed for FBG, HbA1c, insulin and C-peptide using an autoanalyzer. HOMA-IR was calculated using the following equation: HOMA-IR?=?fasting insulin (µU/ml)?×?fasting glucose (mmol/L)/22.5. There was a significant increase in the levels of FBG and HbA1c in diabetic patients. Although the levels of C-peptide and insulin did not differ significantly between the two groups, a significant increase in HOMA-IR was observed in T2DM patients. Both insulin and C-peptide were significantly correlated with HOMA-IR. In conclusion, C-peptide may serve as a simple and convenient predictor of HOMA-IR.  相似文献   

7.
8.
The role of nitric oxide in the development of diabetic angiopathy.   总被引:8,自引:0,他引:8  
Diabetic angiopathy is the main cause of morbidity and mortality in patients with diabetes mellitus. Clinical manifestations and pathophysiological mechanisms of diabetic angiopathy can be traced back to the development of endothelial cell dysfunction with alterations in the eNOS/NO system production or availability as the primum movens in its natural history. Hyperglycemia per se or through the accumulation of AGEs, increased oxidative stress, leading to NOS uncoupling and NO-quenching by excess superoxide and peroxynitrite, and individual genetic background are thought to be responsible for this NO metabolism imbalance. The complex interplay of these mechanisms results in a perturbation of the physiological properties of NO in the maintenance of endothelial homeostasis, such as vasodilation, anticoagulation, leukocyte adhesion, smooth muscle cell proliferation, and antioxidant capacity. Hence, abnormality in NO availability results in generalized accelerated atherosclerosis, hyperfiltration, glomerulosclerosis, tubulointerstitial fibrosis and progressive decline in glomerular filtration rate, and apoptosis and neovascularization in the retina. Indeed, the parallel development of nephropathy, retinopathy, and macroangiopathy may be considered as manifestations of endothelial dysfunction at distinct vascular sites. Given this scenario, intervention targeting any of the pathways involved in the NOS/NO system cascade may prove potential therapeutic targets in the prevention of long-term diabetic complications.  相似文献   

9.
The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (K(Ca)) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial K(Ca) channels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial K(Ca) channels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.  相似文献   

10.
Oxidative stress and impaired bioactivity of vascular nitric oxide (NO) play an important role in the pathogenesis of macro- as well as microangiopathic complications in diabetes mellitus. To determine the cause of this impaired bioactivity, we tested the effect of long-term hyperglycemia and antioxidative treatment on tissue-specific endothelial (e)NOS- and inducible (i)NOS-expression and the main target of NO action, cGMP, in diabetic rats. After 4 weeks of hyperglycemia, eNOS-mRNA expression was significantly down-regulated in all tissues tested. In contrast, iNOS-mRNA was significantly up-regulated and tissue generation of cGMP significantly increased. Treatment with alpha-lipoicacid reversed changes of NOS-isoform expression as well as cGMP-concentration without changing blood glucose levels. In addition, oxidative stress significantly decreased in diabetic rats treated with alpha-lipoicacid. Together, diabetes regulates NOS-isoforms differentially by down-regulating eNOS and up-regulating iNOS. In addition, our data suggest that the cause of impaired endothelial vasodilatation in experimental diabetes is not degradation or inactivation of NO. On the contrary, these results support the concept of decreased reactivity of the vascular smooth muscle to NO or increased NO activity as a possible vascular damaging agent, e.g., by inducing apoptosis in vascular cells. Furthermore, our data show that antioxidative treatment is capable of reversing changes in the NO-cGMP system and may therefore be an important therapeutic option for preventing vascular damage in diabetes mellitus.  相似文献   

11.
Atherosclerotic macrovascular disease is the leading cause of both morbidity and mortality in non-insulin dependent diabetes mellitus. Endothelial dysfunction is a key, early and potentially reversible event in pathogenesis of atherosclerosis. Its occurrence in non-insulin dependent diabetes mellitus is well supported by both in-vitro and in-vivo studies. Non-insulin dependent diabetes mellitus results in diverse abnormalities of lipid and lipoprotein metabolism, in particular hypertriglyceridaemia, low levels of high density lipoprotein and abnormalities of post-prandial lipaemia. A variety of studies demonstrate the presence of enhanced oxidative stress in non-insulin dependent diabetes mellitus, with recent data implying an association between oxidative stress, post-prandial lipaemia and endothelial dysfunction in non-diabetic subjects. In this article based on in-vitro and human studies, we develop the hypothesis that endothelial dysfunction in non-insulin dependent diabetes mellitus is the consequence of the diabetic dyslipidaemia, in particular post-prandial lipaemia, and of oxidative stress on the action of nitric oxide. The practical applications of this theory provide potential therapeutic options which may reduce the risk of vascular disease in non-insulin dependent diabetes mellitus.  相似文献   

12.
Although diabetes mellitus is predominantly a metabolic disorder, recent data suggest that it is as much a vascular disorder. Cardiovascular complications are the leading cause of death and disability in patients with diabetes mellitus. A number of recent reports have emphasized that many patients already have atherosclerosis in progression by the time they are diagnosed with clinical evidence of diabetes mellitus. The increased risk of atherosclerosis and cardiovascular complications in diabetic patients is related to the frequently associated dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, and endothelial dysfunction. The evolving knowledge regarding the variety of metabolic, hormonal, and hemodynamic abnormalities in patients with diabetes mellitus has led to efforts designed for early identification of individuals at risk of subsequent disease. It has been suggested that insulin resistance, the key abnormality in type II diabetes, often precedes clinical features of diabetes by 5–6 years. Careful attention to the criteria described for the cardiovascular dysmetabolic syndrome should help identify those at risk at an early stage. The application of nonpharmacologic as well as newer emerging pharmacologic therapies can have beneficial effects in individuals with cardiovascular dysmetabolic syndrome and/or diabetes mellitus by improving insulin sensitivity and related abnormalities. Early identification and implementation of appropriate therapeutic strategies would be necessary to contain the emerging new epidemic of cardiovascular disease related to diabetes.  相似文献   

13.
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca2+ handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca2+ signaling. The Ca2+ signalosome of VSMCs is integrated by an extensive number of Ca2+ handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca2+ signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.  相似文献   

14.
GLP-1 stimulates insulin secretion, suppresses glucagon secretion, delays gastric emptying, and inhibits small bowel motility, all actions contributing to the anti-diabetogenic peptide effect. Endothelial dysfunction is strongly associated with insulin resistance and type 2 diabetes mellitus and may cause the angiopathy typifying this debilitating disease. Therefore, interventions affecting both endothelial dysfunction and insulin resistance may prove useful in improving survival in type 2 diabetes patients. We investigated GLP-1's effect on endothelial function and insulin sensitivity (S(I)) in two groups: 1) 12 type 2 diabetes patients with stable coronary artery disease and 2) 10 healthy subjects with normal endothelial function and S(I). Subjects underwent infusion of recombinant GLP-1 or saline in a random crossover study. Endothelial function was measured by postischemic FMD of brachial artery, using ultrasonography. S(I) [in (10(-4) dl.kg(-1).min(-1))/(muU/ml)] was measured by hyperinsulinemic isoglycemic clamp technique. In type 2 diabetic subjects, GLP-1 infusion significantly increased relative changes in brachial artery diameter from baseline FMD(%) (3.1 +/- 0.6 vs. 6.6 +/- 1.0%, P < 0.05), with no significant effects on S(I) (4.5 +/- 0.8 vs. 5.2 +/- 0.9, P = NS). In healthy subjects, GLP-1 infusion affected neither FMD(%) (11.9 +/- 0.9 vs. 10.3 +/- 1.0%, P = NS) nor S(I) (14.8 +/- 1.8 vs. 11.6 +/- 2.0, P = NS). We conclude that GLP-1 improves endothelial dysfunction but not insulin resistance in type 2 diabetic patients with coronary heart disease. This beneficial vascular effect of GLP-1 adds yet another salutary property of the peptide useful in diabetes treatment.  相似文献   

15.
Decreased availability of arginine and impaired production of NO (nitric oxide) have been implicated in the development of endothelial dysfunction. Citrulline formed by the NOS reaction is recycled to arginine by the citrulline-NO cycle, which is composed of NOS, argininosuccinate synthetase (AS), and argininosuccinate lyase. Therefore, we investigated the alterations of these enzymes in the aorta of streptozotocin (STZ)-induced diabetic rats. eNOS and AS mRNAs were increased by three- to fourfold 1-2 weeks after STZ treatment and decreased at 4 weeks. AL mRNA was weakly induced. Induction of eNOS and AS proteins was also observed. Cationic amino acid transporter (CAT)-1 mRNA remained little changed, and CAT-2 mRNA was not detected. The plasma nitrogen oxide levels were increased 1-2 weeks after STZ treatment and decreased at 4 weeks. Transforming growth factor-beta1 (TGF-beta1) mRNA in the aorta was also induced. TGF-beta1 induced eNOS and AS mRNAs in human umbilical vein endothelial cells but inhibited the proliferation of HUVEC. These results indicate that eNOS and AS are coinduced in the aorta in early stages of STZ-induced diabetic rats and that the induction is mediated by TGF-beta1. The results also suggest that TGF-beta1 works antiatherogenically at early stages of diabetes by increasing NO production, whereas prolonged elevation of TGF-beta1 functions atherogenically by inhibiting endothelial cell growth.  相似文献   

16.
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.  相似文献   

17.
To dissect the effect of hyperinsulinemia versus hyperglycemia on TNF-related apoptosis inducing ligand (TRAIL) expression in the macrovascular district, we measured TRAIL mRNA and protein in four groups of animals: streptozotocin (SZT)-induced diabetic rats, vehicle-treated control animals, diabetic rats treated with insulin and non-diabetic rats treated with insulin. While the aortas of diabetic rats did not show significant differences in TRAIL expression with respect to vehicle-treated control animals, the aortas of both diabetic and non-diabetic rats treated in vivo for 16 days with insulin showed a significant decrease in TRAIL expression with respect to either diabetic and control rats. Moreover, in vitro treatment of both rat and human vascular smooth muscle cells (VSMC) with insulin induced the down-regulation of TRAIL protein. While the addition of recombinant TRAIL to rat VSMC promoted the dose-dependent release of bioactive nitric oxide (NO), this effect was significantly counteracted by pre-exposure of VSMC to insulin. These findings suggest that TRAIL might act as an endogenous regulator of the vascular tone and that chronic elevation of insulin might contribute to the vascular abnormalities characterizing type-2 diabetes mellitus by down-regulating TRAIL expression and activity.  相似文献   

18.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

19.
Endothelial dysfunction is a major characteristic of the atherosclerotic process and can be used to predict the outcome of cardiovascular disease in humans. Together with obesity and insulin resistance, such dysfunction is common among patients with type 2 diabetes and may explain their poor prognosis in connection with such a disease. Insulin resistance in skeletal muscle, adipose tissue, and the liver, a well-characterized feature of obesity and type 2 diabetes, contributes to the impairment of glucose homeostasis. Furthermore, the myocardial muscle can also be resistant to insulin, which might, at least in part, explain the frequent development of heart failure in individuals suffering from type 2 diabetes. The relationship between insulin resistance and endothelial dysfunction has prompted investigations, which reveal that regular exercise, dietary changes, and/or pharmacological agents can both increase insulin sensitivity and improve endothelial function. Glucagon-like peptide-1, an incretin, lowers blood levels of glucose and offers a promising new approach to the treatment of type 2 diabetes mellitus. Its extensive extra-pancreatic effects, including a favorable influence on cardiovascular parameters, are extremely interesting in this connection. The potential pharmacological effects of glucagon-like peptide-1 and its analogues on the endothelium and the heart are discussed in the present review.  相似文献   

20.
Several thrombogenic abnormalities are associated with diabetes. Since endothelial dysfunction occurs at early stages of disease, it may reflect pathophysiological changes that are responsible for alterations in vascular structure, growth and modifications of adhesivity to platelets and leukocytes, leading to atherosclerosis and thrombosis. Predisposing factors of vascular diseases, such as diabetes, are also associated with endothelial dysfunction. Restoration or replacement of endothelium-related factors like nitric oxide impede the progression of vascular thrombogenic diseases, and prevent the action of vasoconstrictor factors such as endothelin or other prothrombotic factors such as plasminogen-activator inhibitor-1. Since high glucose concentration in blood is the hallmark of diabetes and because the vascular lesions of atherosclerosis are localized in large artheries, we have cultured endothelial cells from the human aorta. Two endothelial cell strains from the same aortic tract that show different characteristics and behavior in high glucose were isolated. Such findings reflect the importance to have well characterized and standardized cell culture systems to carry out experiments to study the glucose-dependent atherosclerotic process in vitro. Our cell strains may represent a useful in vitro model to study the complex pathophysiology of diabetes-related atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号