首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.  相似文献   

2.
3.
《Life sciences》1993,53(8):PL141-PL146
Although metabolism via glucuronide conjugation has generally been considered a detoxification route for carboxylic acids, the newly discovered chemical reactivity of these conjugates, leading to covalent binding with proteins, is consistent with the toxicity observed for drugs containing the carboxylic acid moiety. Here we report that degradation rates (intramolecular rearrangement and hydrolysis) for 9 drug glucuronide metabolites show an excellent correlation (r2=0.995) with the extents of drug covalent binding to albumin in vitro. Furthermore, this binding capacity is predictable based on chemical structure of the acid and depends on the degree of substitution at the carbon alpha to the carboxylic acid. The in vivo covalent binding in humans for these drugs is also predictable (r2=0.873) when the extent of adduct formation is corrected for the measured plasma glucuronide concentrations. These results suggest that the structure of a carboxylic acid drug may predict the degree to which the corresponding acyl glucuronides will form covalent adducts that probably/possibly lead to toxicity. This information could be a useful adjunct in drug design.  相似文献   

4.
An HPLC method is described which can determine covalent binding to intact nucleic acid by intercalating anticancer drugs and at the same time remove noncovalently bound intercalated drug. The method uses a column containing a nonporous 2-microns DEAE anion-exchange resin capable of chromatographing nucleic acids greater than 50,000 bases in size in under 1 h. After priming with 1 mg of DNA, the column behaves as an intercalator affinity column, strongly retaining the drug while allowing the nucleic acid to pass through normally. Retained drug is released with an injection of 0.1 M potassium hydroxide. Incubations were performed with the intercalator doxorubicin, which is also believed to bind covalently to DNA. When [14C]doxorubicin was mixed with DNA, at a concentration where all the drug would bind by intercalation, the column retained 82% of the total radioactivity, only 18% migrated with the nucleic acid. If the DNA was mildly denatured by treatment with 2 M sodium chloride at 50 degrees C for 45 min before chromatography, then 99.8% of total radioactivity was retained, only background counts migrated with the nucleic acid, as was the case with single-stranded DNA and RNA without any treatment. Purified NADPH cytochrome P-450 reductase was used to activate doxorubicin. DNA inhibited the metabolism of the drug by the enzyme, no covalent binding occurred with RNA, low levels occurred with single-stranded DNA (34 pmol/100 micrograms), and the highest levels were recorded with oligonucleotides (243 pmol/100 micrograms). The assay was sufficiently sensitive to measure covalent binding to DNA extracted from MCF-7 human breast cancer cells treated with 50 microM [14C]doxorubicin (18.6 pmol/100 micrograms). Thus, covalent binding to DNA, RNA, and oligonucleotides by intercalators can be measured quickly (20 min) without the need to either digest the nucleic acid or subject it to long sample preparation techniques.  相似文献   

5.
32P-Postlabeling techniques have been developed to detect and measure adducts formed by covalent binding of carcinogens of Known or unknown origin with DNA (and RNA). The assay is applicable to various classes of chemical carcinogens and permits detection of many adducts at attomole (10–18 mol) level using microgram amounts of DNA. Here, we demonstrate the application of the assay for the analysis of short- and long-term persistence of 2-acetylaminofluorene-DNA adducts in rat liver in vivo and also outline examples illustrating the applicability of the procedure to different experimental problems.Abbreviations AAF 2-acetylaminofluorene - N-OH-AAF N-hydroxy-2-acetylaminofluorene  相似文献   

6.
The intracellular location of nucleic acid intercalators (NAI) in native (not fixed) Saccharomyces cerevisiae cells has been studied using fluorescence microscopy combined with computer pseudospectral image analysis. Three NAI: anthracycline anticancer drug doxorubicin and nucleic acid dyes ethidium bromide and 4′,6-diamidino-2-phenylindole (DAPI) were used. All three NAI were shown to be localized in nuclei and mitochondria. In contrast to DAPI, which interacted only with DNA, a large fraction of doxorubicin and ethidium bromide apparently bound to mitochondrial membranes. Upon combined application, competition between these intercalators for binding sites in the nuclear and mitochondrial DNA occurred. It was concluded that this approach may be used in designing new DNA-targeted drugs and in preliminary studies of their interaction with eukaryotic cells.  相似文献   

7.
BBR3464, a charged trinuclear platinum compound, is the first representative of a new class of anticancer drugs to enter phase I clinical trials. The structure of BBR3464 is characterized by two [trans-PtCl(NH(3))(2)] units linked by a tetraamine [trans-Pt(NH(3))(2)?H(2)N(CH(2))(6)NH(2)?(2)] unit. The +4 charge of BBR3464 and the separation of the platinating units indicate that the mode of DNA binding will be distinctly different from those of classical mononuclear drugs such as cisplatin, cis-[PtCl(2)(NH(3))(2)]. The reaction of BBR3464 with three different nucleic acid conformations was assessed by gel electrophoresis. Comparison of single-stranded DNA, RNA, and double-stranded DNA indicated that the reaction of BBR3464 with single-stranded DNA and RNA was faster than that with duplex DNA, and produced more drug-DNA and drug-RNA adducts. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to further characterize the binding modes of BBR3464 with the DNA substrates. BBR3464 binding to different nucleic acid conformations raises the possibility that the adducts of single-stranded DNA and RNA may play a role in the different antitumor efficacies of this novel drug as compared with cisplatin.  相似文献   

8.
DNA adducts generated by carcinogenic chemicals reflects human exposure and DNA adducts are related to tumor formation. Most chemical carcinogens require activation to reactive intermediates that bind to nucleophilic centers in proteins and nucleic acids thereby forming covalent adducts. Also, many of the chemicals considered carcinogenic for humans form covalent DNA adducts. Therefore, such DNA damage is generally considered to be causative and linked to tumor formation. In this article we have summarized the work done for many years on the role of DNA adduct formation as an indicator of their carcinogenicity. We have also addressed the important role for measurement of DNA adducts in studies with potential chemopreventive agents for which it is central to have a marker that can be measured more rapidly than changes in cancer incidence.  相似文献   

9.
Metabolic activation of drugs frequently generates electrophilic products that may undergo covalent binding to biological macromolecules, such as proteins and DNA. The resulting covalent adducts are of considerable concern in drug discovery and development. Several strategies for assessing the potential risks of candidate drugs have been reported. Of these, glutathione trapping is the most commonly used method together with mass spectrometry. Furthermore, drug-mediated protein modifications have been studied using serum albumin and CYP enzymes to clarify target amino acids and mechanism-based inhibition, respectively. In this article, we introduce a practical way to screen drug-mediated protein modifications. The method, referred to as “predicted multiple selected reaction monitoring,” is based on the selected reaction monitoring (SRM) strategy, but targets all possible chemically modified tryptic peptides. The creation of SRM lists may require patience; however, this strategy could facilitate more sensitive screening compared with the common strategy of data-dependent product ion scanning. Ketoprofen-N-hydroxysuccinimidyl ester (equivalent to glucuronide) and N-acetyl-p-benzoquinone imine (NAPQI) were allowed to react with human serum albumin as a model experiment. Using this strategy, 11 ketoprofen-adduction sites (at Lys137, 195, 199, 212, 351, 402, 432, 436, 525, 536, and 541) and 1 NAPQI-adduction site (at Cys34) were easily identified.  相似文献   

10.
Abstract

A theoretical method is developed for calculation of melting curves of covalent complexes of DNA with antitumor drugs. The method takes into account all the types of chemical modifications of the double helix caused by platinum compounds and DNA alkylating agents: 1) monofunctional adducts bound to one nucleotide; 2) intrastrand cross-links which appear due to bidentate binding of a drug molecule to two nucleotides that are included into the same DNA strand; 3) interstrand cross-links caused by bidentate binding of a molecule to two nucleotides of different strands. The developed calculation method takes into account the following double helix alterations at sites of chemical modifications: 1) a change in stability of chemically modified base pairs and neighboring ones, that is caused by all the types of chemical modifications; 2) a change in the energy of boundaries between helical and melted regions at sites of chemical modification (local alteration of the factor of cooperativity of DNA melting), that is caused by all the types of chemical modifications, too; 3) a change in the loop entropy factor of melted regions that include interstrand cross-links; 4) the prohibition of divergence of DNA strands in completely melted DNA molecules, which is caused by interstrand cross-links only. General equations are derived, and three calculation methods are proposed to calculate DNA melting curves and the parameters that characterize the helix-coil transition.  相似文献   

11.
DNA cages hold tremendous potential to encapsulate and selectively release therapeutic drugs, and can provide useful tools to probe the size and shape dependence of nucleic acid delivery (McLaughlin & Sleiman, H. F., 2011). These structures have been shown to site-specifically present ligands, small molecule drugs, or antisense/siRNA motifs, in order to increase their therapeutic efficiency (Li & Fan, C. 2012). One of the major barriers towards their in vivo applications is the susceptibility of their strands towards nuclease degradation. A number of chemical strategies have been used to block nuclease digestion of oligonucleotides and improve potency, such as the use of a phosphorothioate backbone, 2´-O-methyl, locked nucleic acids, and short hybrid gapmers. However, the synthesis of these oligonucleotides is often complicated and expensive, driving the need for simple modifications to enhance serum stability and address in vivo biodistribution. We show here a simple method to significantly enhance the nuclease stability of DNA strands, through introduction of commercially available, single-endmodifications (Conway & Sleiman 2013). We use these oligonucleotides to construct DNA cages in a single step and in quantitative yields. Even in single-stranded form, these cages stabilize their component strands towards nucleases, with mean lifetimes as long as 62?h in 10 % (v/v) fetal bovine serum (FBS). We examine the effect of other DNA-end modifications on nuclease susceptibility. Finally, we show the ligation of these single-stranded cages into topologically interesting catenane ‘necklaces,’ with mean lifetimes in serum of ~200?h.  相似文献   

12.
Incubation of benzo[alpha] pyrene 4,5-oxide with poly(G) in neutral aqueous ethanol resulted in the formation of covalent adducts and in the production of free 4-hydroxybenzo[alpha]pyrene. This phenol, which was identified by its UV spectral properties and by its chromatographic characteristics, was also formed but at a much slower rate when the epoxide was incubated with DNA or with GMP. Phenol formation was not detected when benzo[alpha]-pyrene 4,5-oxide was incubated for prolonged periods in the presence of poly(A), poly(C) or poly(U) or in the absence of nucleic acid. Formation of 4-hydroxybenzo[alpha] pyrene from the epoxide in the presence of poly(G) was not accompanied by detectable base modifications or by breakage of phosphodiester linkages.  相似文献   

13.
Thirteen diversified antimetabolites of coenzyme Q10 which have antitumor activity in vivo were tested for inhibition of uptake of tritiated thymidine and uridine into DNA and RNA, respectively, of L1210 cells grown in tissue culture. Eight of these antimetabolites have inhibitory activities of the same order of magnitude as the used anticancer drugs, rubidazone and ellipticine. 5-ω-Phenylpropylmercapto-2,3-dimethoxy-1,4-benzoquinone was particularly potent to inhibit nucleic acid synthesis; ED50 for DNA = 2.1 μM and ED50 for RNA = 4.0 μM.  相似文献   

14.
Intact drugs with spirocyclopropylhexadienone moieties can be regenerated from the covalent DNA adducts induced by antitumor antibiotics duocarmycin (DUM) A, SA and some DUMA analogues in neutral aqueous solution. We detected the reversible nature of DUMs by determination of the antimicrobial activity and cytotoxicity of DUM-DNA adducts. All of the adducts selectively inhibited the growth of a sensitive strain of Bacillus but not that of the wild type strain, a property of parent DUM and its analogues. Most of the DNA adducts were also cytotoxic to HeLa S3. These results suggested that active drugs can be released from their covalent DNA adducts under these biological assay conditions. Regeneration of intact drugs was quantitatively analyzed by HPLC and the amount of free drug released from DNA adducts revealed that the rate and efficiency of this reversal were dependent on structural variables among the drugs. The differences in rates of reversibility were correlated with the biological activity of DUMs. The effect of pH, temperature and salt concentration on the regeneration of drugs from their DNA adducts suggest a catalytic role of double-helical DNA on the reversal pathway.  相似文献   

15.
Limited sensitivity of existing assays has prevented investigation of whether Adriamycin–DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin–DNA adducts/104 bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin–DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [14C]Adriamycin–DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin–DNA adducts at clinically-relevant Adriamycin concentrations. [14C]Adriamycin treatment (25 nM) resulted in 4.4 ± 1.0 adducts/107 bp (~1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin–DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin–DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.  相似文献   

16.
DNAzymes represent a new generation of catalytic nucleic acids for specific RNA targeting in order to inhibit protein translation from the specifically cleaved mRNA. The 10–23 DNAzyme was found to hydrolyze RNA in a sequence-specific manner both in vitro and in vivo. Although single-stranded DNAzymes may represent the most effective nucleic acid drug to date, they are nevertheless sensitive to nuclease degradation and require modifications for in vivo application. However, previously used stabilization of DNAzymes by site-specific phosphorothioate (PT) modifications reduces the catalytic activity, and the PTO displays toxic side effects when applied in vivo. Thus, improving the stability of DNAzymes without reducing their catalytic activity is essential if the potential of these compounds should be realized in vivo. Results: The Circozyme was tested targeting the mRNA of the most common genetic rearrangement in pediatric acute lymphoblastic leukemia TEL/AML1 (ETV6/RUNX1). The Circozyme exhibits a stability comparable to PTO-modified DNAzymes without reduction of catalytic activity and specificity and may represent a promising tool for DNAzyme in vivo applications. Conclusion: The inclusion of the catalytic site and the specific mRNA binding sequence of the DNAzyme into a circular loop-stem-loop structure (Circozyme) of approximately 70 bases presented here represents a new effective possibility of DNAzyme stabilization.  相似文献   

17.
Butadiene monoepoxide (BMO), epoxybutanediol (EBD) and diepoxybutane (DEB) are reactive metabolites of 1,3-butadiene (BD), an important industrial chemical classified as a probable human carcinogen. The covalent interactions of these metabolites with DNA lead to the formation of DNA adducts which may induce mutations or other types of DNA damage, resulting in tumour formation. In the present study, two pairs of diastereomeric N-1-BMO-adenine adducts were identified in the reaction of BMO with 2´-deoxyadenosine-5´-monophosphate (5´-dAMP). The major products formed by reacting EBD with 2´-deoxyguanosine-5´-monophosphate (5´-dGMP) were characterized as diastereomeric N-7-(2´,3´,4´-trihydroxybut-1´-yl)-5´-dGMP by UV and electrospray mass spectrometry. The formation of N-7-BMO-guanine adducts (1´-carbon, 60; 2´carbon, 54/104 nucleotides) in BMO-treated DNA was about four times higher than that of N-1-BMO-adenine adducts (1´-carbon, 20; 2´-carbon, 8.7/104 nucleotides). However, the recovery of N-1-BMO-adenine adducts in DNA (45 ± 5%) was two times higher than that of N-7-guanine adducts (20 ± 4%) by 32P-postlabelling analysis. Using the 32P-postlabelling/ HPLC assay, N-1-BMO-adenine, N-7-BMO-guanine and N-7-EBDguanine adducts were detected in BMO- or DEB-treated DNA and in liver DNA of rats exposed to BD by inhalation. The amount of N-7-EBD-guanine adducts (11/108 nucleotides) in rat liver was about three-fold higher than N-7-BMO-guanine adducts (4.0/108 nucleotides). The novel finding of N-1-BMO-adenine adducts formed in vivo may contribute to the understanding of the mechanisms of BD carcinogenic action.  相似文献   

18.
DNA topoisomerases are well-established targets of important therapeutic agents which include the antibacterial quinolones and anticancer camptothecins. Screens for new classes of topoisomerase inhibitors generally employ methods, such as gel electrophoresis, which are not readily amenable to a rapid high-throughput format. We describe here a high-throughput assay to screen for inhibitors of human DNA topoisomerase I based on the scintillation proximity assay. The assay employs recombinant biotinyl-topoisomerase I fusion protein, a hybrid protein which contains a domain that is biotinylated duringin vivoexpression. The hybrid topoisomerase I fusion protein is found to be biotinylated, active, and nuclear-localized when produced in insect cells using a baculovirus expression system. The biotinyl-topoisomerase I fusion protein can be captured from crude nuclear extracts by immobilization on streptavidin-coated scintillation proximity assay beads. The assay detects binding of3H-labeled DNA to the bead-immobilized enzyme by scintillation counting. The method is also able to detect stabilization of covalent protein–DNA complexes by camptothecin, an inhibitor previously shown to stabilize covalent intermediates that form during catalysis.  相似文献   

19.
The DNA molecule is a target for plethora of anticancer and antiviral drugs that forms covalent and non-covalent adducts with major or minor groove of DNA. In present study we synthesized series of novel Pyrazolo [1,5-a]pyrimidine derivatives. The newly synthesized compounds were characterized by elemental analysis, IR, 1H NMR, and mass spectral data. The selected compounds were studied for interaction with Calf thymus DNA (CT-DNA) using electronic spectra, viscosity measurement and thermal denaturation studies. Further, molecular interactions were revealed for compound IIIa and IVa by computational methodologies. The preferred mode of ligand binding with double helical DNA as well as preferable DNA groove were explored by molecular docking in different DNA models.  相似文献   

20.
Enzymes that form transient DNA–protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA–protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA–protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA–protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA–protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA–protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1–DNA and Top2a–DNA adducts in human cells, and gyrase–DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号