首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

2.
Abstract Thiosphaera pantotropha and some strains of Rhodobacter capsulatus express both a periplasmic nitrate reductase and cytochrome c peroxidase when grown under aerobic conditions. Harvested cell suspensions of either species can respire nitrate in the presence of 200 μM O2 (∼ 80% air saturation), at 70–80% of the anaerobic rate. Addition of hydrogen peroxide to such cells causes a 90% inhibition of nitrate reduction under anaerobic or aerobic conditions. The duration of the inhibition is proportional to the concentration of hydrogen peroxide added and can be ascribed to the expression of periplasmic peroxidases that compete with the nitrate reductase for electrons from the respiratory chain. The results reveal a hitherto unrecognised interaction between reactions of denitrification and the reduction of hydrogen peroxide by a periplasmic peroxidase that may have implications for the denitrification in microaerobic environments. The creation of aerobic conditions in bacterial cultures by addition of hydrogen peroxide, and relying on the generation of oxygen by endogenous catalase activity, is a commonly used technique for studying respiratory processes. The observations presented here demonstrate that results derived from such experiments should be interpreted with caution.  相似文献   

3.
BACKGROUND: Glutathione plays crucial roles in antioxidant defence and glutathione deficiency contributes to oxidative stress and may therefore play a key role in the pathogenesis of many diseases. The objectives of the present study were to evaluate the effects on glutathione turnover of thiol and non-thiol antioxidants in human cell cultures and if any of the antioxidant had a short-term cellular effect against different levels of hydrogen peroxide. METHODS: We have investigated the effect on the total glutathione amount in HeLa and hepatoma cell cultures of thiol antioxidants in comparison with non-thiol antioxidants, such as a copper chelator, Vitamin C, and a flavonoid. Furthermore, we have investigated the short-term (within 24h) interaction of the different antioxidants with hydrogen peroxide. RESULTS AND CONCLUSION: Lipoic acid and quercetin (Quer) were the two antioxidants that showed the highest stimulation of glutathione synthesis in cell cultures as judged by the total glutathione amount. However, no antioxidant protected against hydrogen peroxide present in concentrations that lowered cell protein. This finding may be attributed to the fact that it is necessary to incubate cell cultures with antioxidants or small doses of oxidants for a period before the cultures are exposed to hydrogen peroxide in order to enhance the antioxidant defence. The presence of Quer and Vitamin C lowered cell protein and total glutathione even in cell cultures containing hydrogen peroxide in concentrations that did not lower cell protein. This finding might be attributed to pro-oxidant properties and formation of excess reactive oxygen species in the presence of Quer and Vitamin C.  相似文献   

4.
Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH.  相似文献   

5.
A method is described for determining low concentrations of hydrogen peroxide by using a polarographic oxygen electrode to measure the oxygen released into solution on addition of catalase. A sample can be assayed directly without prior manipulation in 3 min. The method is capable of assaying hydrogen peroxide concentrations as low as 7 μM. The method has proved extremely useful for the assay of hydrogen peroxide secreted into milk by lactic acid bacteria.  相似文献   

6.
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As determined by autoradiography after two-dimensional gel electrophoresis, approximately 28 newly synthesized proteins were detected in response to oxidative conditions. These proteins were found to have a broad range of pI values (from 5.1 to 7.2) and molecular weights (from 12,000 to 79,000). The hydrogen peroxide- and paraquat-inducible responses were similar but not identical to that induced by oxygen as seen by two-dimensional gel protein profile. Eleven of the oxidative response proteins were closely related, with pI values and molecular weights from 5.1 to 5.8 and from 17,000 to 23,000, respectively. As a first step to understanding the resistance to oxygen, a catalase-deficient mutant was constructed by allelic gene exchange. The katB mutant was found to be more sensitive to the lethal effects of hydrogen peroxide than was the parent strain when the ferrous iron chelator bipyridyl was added to culture media. This suggests that the presence of ferrous iron in anaerobic culture media exacerbates the toxicity of hydrogen peroxide and that the presence of a functional catalase is important for survival in the presence of hydrogen peroxide. Further, the treatment of cultures with a sublethal concentration of hydrogen peroxide was necessary to induce resistance to higher concentrations of hydrogen peroxide in the parent strain, suggesting that this was an inducible response. This was confirmed when the bacterial culture, treated with chloramphenicol before the cells were exposed to a sublethal concentration of peroxide, completely lost viability. In contrast, cell viability was greatly preserved when protein synthesis inhibition occurred after peroxide induction. Complementation of catalase activity in the mutant restored the ability of the mutant strain to survive in the presence of hydrogen peroxide, showing that the catalase (KatB) may play a role in oxidative stress resistance in aerotolerant anaerobic bacteria.  相似文献   

7.
Extracellular peroxidases are classified as free, or ionically or covalently bound to the cell wall. In addition, peroxidase-like activities have often been demonstrated at the outer surface of protoplasts and plasma membrane preparations. Under certain conditions apoplastic peroxidases have been shown to contribute to the formation of superoxide and hydrogen peroxide during the `oxidative burst' through the oxidation of a reductant. However, the identity of this reductant remains unclear. It has been suggested that the production of these active oxygen species may play important roles in plant responses to biotic and abiotic stress. Extracellular release of pre-existing and de novo synthesis of apoplastic peroxidases is regulated by changing environmental conditions. While the oxidative burst could potentially be harmful to a plant's own cells, tissues can rapidly metabolize even high concentrations of hydrogen peroxide. Recent work has shown that when extracellular hydrogen peroxide exceeds the supplies of reductants, class II and class III peroxidases can display catalase-like activity. Under these conditions, hydrogen peroxide is able to act as both oxidizing and reducing substrate. It seems likely therefore, that a further role of extracellular peroxidases is to protect plants from the consequences of the oxidative burst that they themselves are responsible for producing.  相似文献   

8.
Responses of lactic acid bacteria to oxygen   总被引:30,自引:0,他引:30  
Abstract A small number of flavoprotein oxidase enzymes are responsible for the direct interaction of lactic acid bacteria (LAB) with oxygen; hydrogen peroxide or water are produced in these reactions. In some cultures exposed to oxygen, hydrogen peroxide accumulates to inhibitory levels.
Through these oxidase enzymes and NADH peroxidase, O2 and H2O2 can accept electrons from sugar metabolism, and thus have a sparing effect on the use of metabolic intermediates, such as pyruvate or acetaldehyde, as electron acceptors. Consequently, sugar metabolism in aerated cultures of LAB can be substantially different from that in unaerated cultures. Energy and biomass yields, end-products of sugar metabolism and the range of substrates which can be metabolised are affected.
Lactic acid bacteria exhibit an inducible oxidative stress response when exposed to sublethal levels of H2O2. This response protects them if they are subsequently exposed to lethal concentrations of H2O2. The effect appears to be related to other stress responses such as heat-shock and is similar, in some but not all respects, to that previously reported for enteric bacteria.  相似文献   

9.
Streptococcus mutans NCTC 10499 was cultured under glucose limitation in a chemostat at varying oxygen supply. The rates of oxygen uptake and hydrogen peroxide degradation by cells from the cultures were measured polarographically using a Clark electrode. Oxygenation of the chemostat culture led to adaptation of the organism to oxygen, in that the maximum oxygen uptake rate of the cells was higher when the cells were grown at higher rate of oxygen supply. It is noted that anaerobically grown cells still exhibited significant oxygen uptake. The rate of oxygen uptake followed saturation-type kinetics and Ks values of cells for oxygen were in the micromole range. Hydrogen peroxide accumulation was not observed in aerated chemostat cultures. However, anaerobically grown cells accumulated H2O2 when exposed to oxygen. Cells from aerated cultures did not accumulate hydrogen peroxide. This may be explained by the fact that the rate of hydrogen peroxide degradation was consistently higher than the rate of oxygen uptake.  相似文献   

10.
The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow, nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h−1 exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than cells growing at a rate of 0.14 h−1 or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium. Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h−1. Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.  相似文献   

11.
The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.  相似文献   

12.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H(2)O(2) oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

13.
Adriamycin forms a chelate with Fe(III) that exhibits complex redox chemistry. The drug ligand is able to directly reduce the bound Fe(III) with the concomitant production of a one-electron oxidized drug radical. This Fe(II) can reduce oxygen to hydrogen peroxide and cleave the peroxide to yield the hydroxyl radical. In addition, the drug X Fe complex can catalyze the transfer of electrons from reduced glutathione to molecular oxygen to yield superoxide, hydrogen peroxide, and hydroxyl radicals. The adriamycin X Fe complex binds to DNA to form a ternary drug X Fe X DNA complex, which is also able to catalyze the thiol-dependent reduction of oxygen and the formation of hydroxyl radical from hydrogen peroxide. As a consequence of this chemistry, the adriamycin X Fe complex can cleave DNA on the addition of glutathione or hydrogen peroxide. Although less well defined, the adriamycin X Fe complex can bind to cell membranes and cause oxidative destruction of these membranes in the presence of thiols or hydrogen peroxide.  相似文献   

14.
1. Glutathione peroxidase has been demonstrated in cattle, rabbit and guineapig lenses. 2. The enzyme will oxidize GSH either with hydrogen peroxide added at the start of the reaction or with hydrogen peroxide generated enzymically with glucose oxidase. 3. No product other than GSSG was detected. 4. Oxidation of GSH can be coupled with oxidation of malate through the intermediate reaction of glutathione reductase and NADPH2. 5. Traces of hydrogen peroxide are present in aqueous humour: it is formed when the ascorbic acid of aqueous humour is oxidized. 6. Hydrogen peroxide will diffuse into the explanted intact lens and oxidize the contained GSH. The addition of glucose to the medium together with hydrogen peroxide maintains the concentration of lens GSH. 7. Glutathione peroxidase in lens extracts will couple with the oxidation of ascorbic acid. 8. It is suggested that, as there is only weak catalase activity in lens, glutathione peroxidase may act as one link between the oxygen of the aqueous humour and NADPH2.  相似文献   

15.
Spirillum volutans grows only under microaerobic conditions in a peptone-succinate-salts broth, but can grow aerobically when the peptone is replaced by vitamin-free acid-hydrolyzed casein broth. The addition of potassium metabisulfite, norepinephrine, catalase or superoxide dismutase (SOD) permitted aerobic growth in peptone-succinate-salts broth. A combination of catalase and SOD had a synergistic effect. S. volutans lacked catalase and had only a low level of peroxidase activity, but did possess SOD activity (12 to 14 U/mg of protein). The organism was found to be extraordinarily sensitive to exogenous hydrogen peroxide. Illumination of peptone-succinate-salts broth generated hydrogen peroxide and rendered the medium inhibitory to growth. A combination of catalase and SOD prevented this inhibition. Growth of S. volutans on solid media, not previously possible, was accomplished by the use of vitamin-free acid-hydrolyzed casein and peptone-succinate-salts agar media; maximum growth responses were dependent on the following combination of factors: addition of bisulfite, catalase, or SOD, protection of the media from illumination, incubation in a highly humid atmosphere, and incubation under atmospheres of 12% oxygen or less. The results indicate that the microaerophilic nature of S. volutans is attributable largely to the high sensitivity of the organism to exogenous hydrogen peroxide and, to a lesser extent, superoxide radicals occurring in the culture medium.  相似文献   

16.
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.  相似文献   

17.
The retinal degeneration characterized with death of retinal ganglion cells is a pathological hallmark and the final common pathway of various optic neuropathies. Thus, there is an urgent need for identifying potential therapeutic compounds for retinal protection. Tetramethylpyrazine has been suggested to be neuroprotective for central neurons by acting as an antioxidant and a calcium antagonist. In this study, we tested the effects of tetramethylpyrazine on the viability of both neuronal and non-neuronal cells in mixed rat retinal cell cultures during a long-term cultivation or following hydrogen peroxide treatments. Cellular and biochemical analyses demonstrated that 50 microM tetramethylpyrazine significantly preserved neuronal morphology and survival in retinal cell cultures following 4-week in vitro cultivation as well as lethal exposures to hydrogen peroxide (10 microM or 50 microM for 24h). Hydrogen peroxide treatments induced remarkable increases in lipid peroxidation and mitochondrial reactive oxygen species (ROS) generation paralleled by the loss of mitochondrial membrane potential, microtubule-associated protein-2 (MAP-2) in neuronal soma and rattin peptide in cultured cells. Addition of tetramethylpyrazine in the cultures efficiently attenuated the signs of oxidative stress and retained abundance of MAP-2 and rattin in association with cell survival. In addition, siRNA-mediated downregulation of MAP-2 or rattin significantly increased the vulnerability of retinal neurons or the number of degenerating cells in the cultures, respectively, whereas exogenous humanin peptide, an analog of rattin, promoted cell survival in cultures under hydrogen peroxide attacks. These results suggest that tetramethylpyrazine protect retinal cells through multiple pathways and might be a potential therapeutic candidate for retinal protection in certain optic neuropathies.  相似文献   

18.
The formation of hydrogen peroxide during the oxidation of NADH by purified preparations of cytochrome o has been demonstrated by employing three independent methods: polarographic, colorimetric, and fluorometric. The first two methods were used to assay for the accumulation of hydrogen peroxide and showed that hydrogen peroxide did accumulate as a product, but only about 30% of the oxygen consumed or 15 to 20% of the NADH oxidized was recoverable as hydrogen peroxide. This lack of 1:1 stoichiometry was not due to residual catalase activity in these preparations which could be eliminated by freeze-thawing. Thus, hydrogen peroxide may not be the sole or primary product of the NADH-cytochrome o oxidase reaction. The fluorometric assay could be coupled directly to the NADH-cytochrome o oxidase reaction in one medium, and this method showed that hydrogen peroxide was generated continuously from the beginning of the reaction in a 1:1 stoichiometry, hydrogen peroxide generated to NADH oxidized. This result suggests that hydrogen peroxide is an intermediate that can be trapped efficiently under the conditions of the fluorometric assay, whereas under the conditions of the first two assays most of the hydrogen peroxide generated undergoes further reaction. Exogenously added FAD or FMN increased the percentage of hydrogen peroxide that accumulated in the NADHcytochrome o oxidase reaction. Flavin is believed to act on the reductase side of cytochrome o so the increased percentage of hydrogen peroxide is not likely to result from the direct reaction of reduced flavin with oxygen.  相似文献   

19.
Veratryl alcohol, added as a supplement to cultures of Phanerochaete chrysosporium, enhanced ligninase activity through protection of the ligninase against inactivation by hydrogen peroxide produced by this fungus in cultures. In the presence of veratryl alcohol, the loss of ligninase activity observed in non-protein-synthesizing cultures (cycloheximide-treated) equaled the extracellular protein turnover. When cultures were not supplemented with veratryl alcohol, inactivation of ligninase by hydrogen peroxide added to protein turnover, resulting in a more rapid loss of ligninase activity. Although all ligninase isoenzymes are sensitive to inactivation by hydrogen peroxide, only the isoenzyme of the highest specific activity (80.6 nkat · mg of protein−1; Mr, 41,800; pI, 3.96) was found to be protected by veratryl alcohol. The concentration of veratryl alcohol necessary for full protection of ligninase activity varied according to the concentration of hydrogen peroxide present in the medium, which depended on the nature of the carbon source (glucose or glycerol). It is proposed that the nature of the carbon source influences the overall ligninase activity not only directly, by affecting the rate and the type of synthesized ligninase, but also by affecting the rate of hydrogen peroxide production, bringing about different rates of inactivation.  相似文献   

20.
It has been shown that the experimental results obtained by Morgulis in a study of the decomposition of hydrogen peroxide by liver catalase at 20°C. and in the presence of an excess of a relatively high concentration of peroxide are quantitatively accounted for by the following mechanisms. 1. The rate of formation of oxygen is independent of the peroxide concentration provided this is greater than about 0.10 M. 2. The rate of decomposition of the peroxide is proportional at any time to the concentration of catalase present. 3. The catalase undergoes spontaneous monomolecular decomposition during the reaction. This inactivation is independent of the concentration of catalase and inversely proportional to the original concentration of peroxide up to 0.4 M. In very high concentrations of peroxide the inactivation rate increases. 4. The following equation can be derived from the above assumptions and has been found to fit the experiments accurately. See PDF for Equation in which x is the amount of oxygen liberated at the time t, A is the total amount of oxygen liberated (not the total amount available), and K is the inactivation constant of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号