首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

2.
Theory suggests that genetic polymorphisms in female mating preferences may cause disruptive selection on male traits, facilitating phenotypic differentiation despite gene flow, as in reinforcement or other models of speciation with gene flow. Very little experimental data have been published to test the assumptions regarding the genetics of mate choice that such theory relies on. We generated a population segregating for female mating preferences and male colour dissociated from other species differences by breeding hybrids between species of the cichlid fish genus Pundamilia. We measured male mating success as a function of male colour. First, we demonstrate that non-hybrid females of both species use male nuptial coloration for choosing mates, but with inversed preferences. Second, we show that variation in female mating preferences in an F2 hybrid population generates a quadratic fitness function for male coloration suggestive of disruptive selection: intermediate males obtained fewer matings than males at either extreme of the colour range. If the genetics of female mate choice in Pundamilia are representative for those in other species of Lake Victoria cichlid fish, it may help explain the origin and maintenance of phenotypic diversity despite some gene flow.  相似文献   

3.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating discrimination and the sterility or inviability of hybrids increase gradually with time. Hybrid sterility and inviability evolve at similar rates. Among allopatric species, mating discrimination and postzygotic isolation evolve at comparable rates, but among sympatric species strong mating discrimination appears well before severe sterility or inviability. This suggests that prezygotic reproductive isolation may be reinforced when allopatric taxa become sympatric. Analysis of the evolution of postzygotic isolation shows that recently diverged taxa usually produce sterile or inviable male but not female hybrids. Moreover, there is a large temporal gap between the evolution of male-limited and female hybrid sterility or inviability. This gap, which is predicted by recent theories about the genetics of speciation, explains the overwhelming preponderance of hybridizations yielding male-limited hybrid sterility or inviability (Haldane's rule).  相似文献   

4.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

5.
J. K. Kelly  MAF. Noor 《Genetics》1996,143(3):1485-1497
Reinforcement is an increase in premating reproductive isolation between taxa resulting from selection against hybrids. We present a model of reinforcement with a novel type of selection on female mating behavior. Previous models of reinforcement have focused on the divergence of female mating preferences between nascent species. We suggest that an increase in the level of female mating discrimination can yield reinforcement without further divergence of either male characters or female preferences. This model indicates that selection on mating discrimination is a viable mechanism for reinforcement and may allow speciation under less stringent conditions than selection on female preference. This model also incorporates empirical results from genetic studies of hybrid fitness determination in Drosophila species. We find that the details of inheritance, which include sex-linked transmission, sex-limited fertility reduction, and X-autosome epistasis, have important effects on the likelihood of reinforcement. In particular, X-autosome epistasis for hybrid fitness determination facilitates reinforcement when hybrid fertility reduction occurs in males, but hinders the process when it occurs in females. HALDANE's rule indicates that hybrid sterility will generally evolve in males prior to females within nascent species. Thus, HALDANE's rule and X-autosome epistasis provide conditions that are surprisingly favorable for reinforcement in Drosophila.  相似文献   

6.
Divergence in male mating signals and associated female preferences is often an important step in the process of speciation. Reproductive character displacement, the pattern of greater divergence of male signals and/or female preference in sympatry than in allopatry, has been observed in a variety of taxa with different degrees of postzygotic isolation. A number of selective processes, including reinforcement, have been proposed to cause such a pattern. Cases in which reproductive character displacement occurs among intraspecific variants are especially informative for understanding how selection acting within a species can lead to the evolution of reproductive barriers and speciation. This study tested the hypothesis that female strawberry poison dart frogs (Dendrobates pumilio) in polymorphic populations of the Bocas del Toro archipelago of Panama show stronger mating discrimination than do females from monomorphic populations, exhibiting an intraspecific pattern of reproductive character displacement. Our results contribute important insights into understanding selection's role in generating the striking diversity of Bocas del Toro's D. pumilio and provide a snapshot of what could be the early stages of reproductive isolation and speciation.  相似文献   

7.
Genetic and phenotypic variation in female response towards male mating attempts has been found in several laboratory studies, demonstrating sexually antagonistic co-evolution driven by mating costs on female fitness. Theoretical models suggest that the type and degree of genetic variation in female resistance could affect the evolutionary outcome of sexually antagonistic mating interactions, resulting in either rapid development of reproductive isolation and speciation or genetic clustering and female sexual polymorphisms. However, evidence for genetic variation of this kind in natural populations of non-model organisms is very limited. Likewise, we lack knowledge on female fecundity-consequences of matings and the degree of male mating harassment in natural settings. Here we present such data from natural populations of a colour polymorphic damselfly. Using a novel experimental technique of colour dusting males in the field, we show that heritable female colour morphs differ in their propensity to accept male mating attempts. These morphs also differ in their degree of resistance towards male mating attempts, the number of realized matings and in their fecundity-tolerance to matings and mating attempts. These results show that there may be genetic variation in both resistance and tolerance to male mating attempts (fitness consequences of matings) in natural populations, similar to the situation in plant-pathogen resistance systems. Male mating harassment could promote the maintenance of a sexual mating polymorphism in females, one of few empirical examples of sympatric genetic clusters maintained by sexual conflict.  相似文献   

8.
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules.  相似文献   

9.
Advances in the genetics of reproductive isolation in Drosophila   总被引:2,自引:0,他引:2  
E Zouros 《Génome》1989,31(1):211-220
Speciation genetics is defined as the study of genetic events and processes that differentiate the probabilities that genetic material from individual members of a population will co-occur in individuals of some future generation. It follows that phenotypic attributes that contribute to this differentiation of probabilities (e.g., mating preferences, sterility, or infertility of individuals from certain types of matings) constitute the phenotype of speciation, and genetic loci that may affect these phenotypic attributes can be considered as speciation genes. The literature on genetic differences between hybridizable species of Drosophila that are responsible for morphological differences, mating preferences, hybrid inviability, and hybrid sterility are reviewed with special reference to the species pair D. mojavensis - D. arizonensis. The case for the involvement of karyotypic changes in speciation in rodents is briefly discussed. It is concluded that no major advance has been made in the speciation genetics of Drosophila since Dobzhansky initiated the field 40 years ago. Yet, the identification of several gene loci that cause hybrid inviability or sterility may open the way to the understanding of reproductive isolation at the molecular level. It is not clear whether this approach will lead to general molecular mechanisms underlying the speciation process.  相似文献   

10.
Assortative mating, when individuals of similar phenotypes mate, likely plays a key role in preventing gene flow during speciation. Reinforcement occurs when two previously geographically separated (allopatric) groups meet after having evolved partial postzygotic isolation; they are selected to evolve or enhance assortative mating to prevent costly intergroup matings that produce only maladaptive or sterile hybrids. Studies in Drosophila have shown that the genetic architectures of mating discrimination could differ significantly with or without reinforcement, suggesting that the evolution of assortative mating may be more complicated than expected. To study the evolution of assortative mating, we evolved mating discrimination in populations of the budding yeast, Saccharomyces cerevisiae. After 36 cycles of selection, these cells are five times more likely to mate with each other than to their ancestors, despite detectable one-way gene flow between the selected and reference populations. Several individual cultures evolved mating discrimination by changing their mating kinetics, with some mating more rapidly and others more slowly than the ancestral population. Genetic analysis indicates that multiple mutations have accumulated to produce the altered mating preference. Our results show that subtle details of mating behavior can play an important role in the evolution of reproductive isolation.  相似文献   

11.
Genotype-environment interactions and natural selection can result in local specialization when different genotypes are favored in different environments. Restricted gene flow or genetic subdivision enhances local genetic diversification across a species when natural selection acts on such variation. The indirect evolution of reproductive isolation and the restriction of gene flow between species in statu nascendi may provide a central role for genotype-environment interactions in speciation genetics. We derive the expected genetic covariance between heterospecific and conspecific viability fitness under several different models of selection, dominance, and breeding structure. Standard quantitative genetic methods can be used to estimate these covariances in experimental studies. These genetic covariances permit us to evaluate in a formal way the indirect effects of selection within a species on the evolution of hybrid inviability between species. We find that, for autosomal loci and random mating, the genetic covariance across species is equal to the product of three quantities: (1) the viability of the best hybrid genotype; (2) the viability effect of an allele in hybrids; and, (3) the change in allele frequency due to selection in the conspecific population. Inbreeding within the conspecific population, expressed as Wright's coefficient, F, increases the genetic covariance by a factor (1 + F). In all cases, a negative genetic covariance across species is evidence for hybrid inviability evolving as an indirect effect of selection within species for adaptive (as opposed to neutral) genetic change. “It is an irony of evolutionary genetics, that although it is a fusion of Mendelism and Darwinism, it has made no direct contribution to what Darwin obviously saw as the fundamental problem: the origin of species…. While it is a question of elementary population genetics to state how many generations will be required for the frequency of an allele to change from q1 to q2, we do not know how to incorporate such a statement into speciation theory, in large part because we know virtually nothing about the genetic changes that occur in species formation.” (Lewontin 1974, p. 159)  相似文献   

12.
How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation.  相似文献   

13.
Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent “single-gene speciation” or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be necessary to investigate populations in which both chiral morphs coexist.  相似文献   

14.
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.  相似文献   

15.
The ecological genetics of homoploid hybrid speciation   总被引:1,自引:0,他引:1  
Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.  相似文献   

16.
Chromaphyosemion killifishes are a very promising taxon for the examination of general principles and mechanisms underlying speciation. The polygamous mating system and high degree of sexual dimorphism in this group suggest that sexual selection and female mating preferences play a crucial role in the current radiation process. Because the emergence of mating preferences for individuals of the own population during allopatry is a necessary precondition for speciation by sexual selection, either via diverging mate recognition traits or reinforcement, we examined whether females of different nominal species (Chromaphyosemion bivittatum vs. Chromaphyosemion volcanum) or populations (C. bivittatum “Toko” vs. C. bivittatum “Ilor”) prefer their own males as mating partners. For this purpose, two different methods were used. First, we conducted simultaneous choice tests where females could choose between two different males, and second, we counted the eggs produced by females in consecutive matings with different males. Both approaches produced the same result: females of the populations under examination preferred to mate with their own males. Preference for own males was symmetrical in all tests. Males, on the other hand, do not discriminate between females, not even on the level of nominal species. Thus, our results are in accordance with the hypothesis that female choice is an important factor for speciation in Chromaphyosemion. Additionally, we present some preliminary data on post-zygotic isolation between the populations.  相似文献   

17.
Reinforcement, a process whereby natural selection strengthens prezygotic isolation between sympatric taxa, has gained increasing attention from evolutionary biologists over the past decade. This resurgence of interest is remarkable given that, in the 1980s, most evolutionary biologists considered reinforcement to be, at best, a process that rarely occurred in nature. Although studies of reinforcement are now an important component of speciation research, we still lack a clear understanding of when reinforcement should occur. Theoretical models have suggested that genetic architecture, population structure and the type of selection influence the action of reinforcement. Still to be considered are the consequences of variation in mating system and patterns of sperm or pollen utilization on the likelihood of reinforcement. We argue that traveling down The Road Not Taken (apologies to Frost), that is, taking into consideration mating system and patterns of gamete utilization, leads to novel and more precise predictions of the circumstances under which reinforcement should occur.  相似文献   

18.
Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation.  相似文献   

19.
Birds have for long been popular study objects in speciation research. Being easy to observe in the field, they have traditionally been particularly important in studies of behavioural and ecological factors in speciation, whereas the genetic aspects of the process have been studied in other organisms, such as Drosophila. More recently, however, a stronger genetic focus has been placed on speciation research also in birds. Here, we review ecological, behavioural and genetic studies on speciation in the pied flycatcher (Ficedula hypoleuca) and the collared flycatcher (Ficedula albicollis). These well‐studied birds provide among the few proposed examples of the process of reinforcement of premating isolation, and the evidence for reinforcement is strong. They are further characterized by having strong intrinsic postzygotic barriers (female hybrid sterility), yet the two species appear to be very similar ecologically. This is in stark contrast to another well‐studied bird complex, Darwin’s finches, in which the species differ vastly in ecologically important traits but have no developmental problems arising from genetic incompatibilities, and where no evidence for reinforcement is found. In the flycatchers, sex chromosome linkage of genes affecting traits associated with both pre‐ and postzygotic barriers to gene exchange is likely to facilitate reinforcement. We discuss whether such sex‐linkage may be common in birds. The contrast between flycatchers and Darwin’s finches indicate that speciation in birds cannot always be understood mainly as a result of divergent natural selection (‘ecological speciation’), and generalizations from one system may lead us astray. We discuss to what extent insight from research on the flycatchers may point to fruitful avenues for future research on bird speciation and specifically call for a more systematic effort to simultaneously investigate ecology, behaviour and genetics of birds caught in the process of speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号