首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAT alpha haploids with mutations in the STE13 or KEX2 gene, and MATa haploids with mutations in the STE6 or STE14 gene, do not mate with wild-type cells of the opposite mating type. We found that such mutants were able to mate with partners that carry mutations (sst1 and sst2) that cause cells to be supersensitive to yeast mating pheromone action. Mating ability of MAT alpha ste13 and MAT alpha kex2 mutants could also be restored by adding normal MAT alpha cells to mating mixtures or by adding just the appropriate purified pheromone (alpha-factor). Therefore, the mating deficiencies caused by the ste13 and kex2 lesions, and by inference, the ste6 and ste14 mutations, appear to result only from secretion of an insufficient amount of pheromone or a nonfunctional pheromone.  相似文献   

2.
3.
S Fields  I Herskowitz 《Cell》1985,42(3):923-930
Yeast alpha and a cells transcribe distinct sets of genes involved in mating behavior, alpha-specific genes and a-specific genes, respectively. The alpha 1 product of the alpha mating type locus (MAT alpha) has been the only known activator of either set of genes; it is required for synthesis of RNA from the alpha-specific genes, one of which is the major alpha-factor gene. By screening for mutants that are no longer able to express this gene, we have identified the STE12 gene product as another positive regulator of the alpha-factor gene. alpha ste12 cells are also defective in RNA production from the other known alpha-specific genes. Moreover, a ste12 cells fail to produce wild-type levels of RNA from the a-specific genes. The STE12 gene product is therefore an activator of two sets of genes involved in yeast cell type specialization.  相似文献   

4.
We have demonstrated and partially characterized the genetic control and pheromonal regulation of a soluble activity, produced only by mating-type a cells, that inhibits the action of the alpha mating pheromone, alpha-factor, on mating-type a cells. This activity was found to be associated with a heat-stable protein and to be secreted by MATa BAR1, mat alpha 2 BAR1, and mat alpha 1 mat alpha 2 BAR1 strains, but not by MAT alpha BAR1, MATa/MAT alpha BAR1, mat alpha 1 BAR1, or MATa barl strains, demonstrating that it is under the control of both the MAT alpha 2 and the BAR1 genes. Secretion of this activity was also found to be stimulated to as much as five times the basal level by exposure of the cells to alpha-factor. This stimulation was maximal after 6 h at a pheromone concentration of approximately 2 U/ml. An assay for this activity was developed by using a refined, quantitative assay for alpha-factor. The pheromone activity of samples added to wells in an agar plate was related to the size of the halo of growth inhibition produced in a lawn of mutant cells that are abnormally sensitive. The alpha-factor-inhibiting activity was related to a reduction of the halo size when active samples were added to the lawn. Although the assay for alpha-factor was found to be relatively insensitive to pH over a range of several units, the alpha-factor-inhibiting activity displayed a sharp pH optimum at approximately 6.5. The properties of this activity have important implications concerning the role of the BAR1 gene product in recovery of mating-type a cells from cell division arrest by alpha-factor.  相似文献   

5.
H. A. Fujimura 《Genetics》1990,124(2):275-282
Mating pheromones, a- and alpha-factors, arrest the division of cells of opposite mating types, alpha and a cells, respectively. I have isolated a sterile mutant of Saccharomyces cerevisiae that is defective in division arrest in response to alpha-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18 and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene (previously shown to encode a protein with similarity to the alpha subunit of mammalian G proteins). In addition, dac2 cells formed prezygotes with wild-type cells of opposite mating types, although they could not undergo cell fusion. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.  相似文献   

6.
A mutation has been identified that suppresses the mating and sporulation defects of all mutations in the mating-type loci of S. cerevisiae. This suppressor, sir1-1, restores mating ability to mat alpha 1 and mat alpha 2 mutants and restores sporulation ability to mat alpha 2 and mata1 mutants. MATa sir1-1 strains exhibit a polar budding pattern and have reduced sensitivity to alpha-factor, both properties of a/alpha diploids. Furthermore, sir1-1 allows MATa/MATa, mat alpha 1/mat alpha/, and MAT alpha/MAT alpha strains to sporulate efficiently. All actions of sir1-1 are recessive to SIR1. The ability of sir1-1 to supply all functions necessary for mating and sporulation and its effects in a cells are explained by proposing that sir1-1 allows expression of mating type loci which are ordinarily not expressed. The ability of sir1-1 to suppress the mat alpha 1-5 mutation is dependent on the HMa gene, previously identified as required for switching of mating types from a to alpha. Thus, as predicted by the cassette model, HMa is functionally equivalent to MAT alpha since it supplies functions of MAT alpha. We propose that sir1-1 is defective in a function. Sir ("Silent-information regulator"), whose role may be to regulate expression of HMa and HM alpha.  相似文献   

7.
8.
The role of alpha-factor structural genes MF alpha 1 and MF alpha 2 in alpha-factor production and mating has been investigated by the construction of mf alpha 1 and mf alpha 2 mutations that totally eliminate gene function. An mf alpha 1 mutant in which the entire coding region is deleted shows a considerable decrease in alpha-factor production and a 75% decrease in mating. Mutations in mf alpha 2 have little or no effect on alpha-factor production or mating. The mf alpha 1 mf alpha 2 double mutants are completely defective in mating and alpha-factor production. These results indicate that at least one alpha-factor structural gene product is required for mating in MAT alpha cells, that MF alpha 1 is responsible for the majority of alpha-factor production, and that MF alpha 1 and MF alpha 2 are the only active alpha-factor genes.  相似文献   

9.
The STE4 gene of Saccharomyces cerevisiae encodes the beta subunit of the yeast pheromone receptor-coupled G protein. Overexpression of the STE4 protein led to cell cycle arrest of haploid cells. This arrest was like the arrest mediated by mating pheromones in that it led to similar morphological changes in the arrested cells. The arrest occurred in haploid cells of either mating type but not in MATa/MAT alpha diploids, and it was suppressed by defects in genes such as STE12 that are needed for pheromone response. Overexpression of the STE4 gene product also suppressed the sterility of cells defective in the mating pheromone receptors encoded by the STE2 and STE3 genes. Cell cycle arrest mediated by STE4 overexpression was prevented in cells that either were overexpressing the SCG1 gene product (the alpha subunit of the G protein) or lacked the STE18 gene product (the gamma subunit of the G protein). This finding suggests that in yeast cells, the beta subunit is the limiting component of the active beta gamma element and that a proper balance in the levels of the G-protein subunits is critical to a normal mating pheromone response.  相似文献   

10.
The Saccharomyces cerevisiae G protein alpha subunit Gpa1p is involved in the response of both MATa and MAT alpha cells to pheromone. We mutagenized the GPA1 C terminus to characterize the receptor-interacting domain and to investigate the specificity of the interactions with the a- and alpha-factor receptors. The results are discussed with respect to a structural model of the Gpa1p C terminus that was based on the crystal structure of bovine transducin. Some mutants showed phenotypes different than the pheromone response and mating defects expected for mutations that affect receptor interactions, and therefore the mutations may affect other aspects of Gpa1p function. Most of the mutations that resulted in pheromone response and mating defects had similar effects in MATa and MAT alpha cells, suggesting that they affect the interactions with both receptors. Overexpression of the pheromone receptors increased the mating of some of the mutants tested but not the wild-type strain, consistent with defects in mutant Gpa1p-receptor interactions. The regions identified by the mating-defective mutants correlated well with the regions of mammalian G(alpha) subunits implicated in receptor interactions. The strongest mating type-specific effects were seen for mutations to proline and a mutation of a glycine residue predicted to form a C-terminal beta turn. The analogous beta turn in mammalian G(alpha) subunits undergoes a conformational change upon receptor interaction. We propose that the conformation of this region of Gpa1p differs during the interactions with the a- and alpha-factor receptors and that these mating type-specific mutations preclude the orientation necessary for interaction with one of the two receptors.  相似文献   

11.
Homothallic switching of yeast mating type genes occurs as often as each cell division, so that a colony derived from a single haploid spore soon contains an equal number of MATa and MAT alpha cells. Cells of opposite mating types conjugate, and eventually the colony contains only nonmating MATa/MAT alpha diploids. Mutations that reduce the efficiency of homothallic MAT conversions yield colonies that still contain many haploid cells of the original spore mating type plus a few recently generated cells of the opposite mating type. These (a greater than alpha)- or (alpha greater than a)-mating colonies also contain some nonmating diploid cells. As an alternative to microscopic pedigree analysis to determine the frequency of mating type conversions in a variety of mutant homothallic strains, we analyzed the proportions of MATa, MAT alpha, and MATa/MAT alpha cells in a colony by examining the mating phenotypes of subclones. We developed a mathematical model that described the proportion of cell types in a slow-switching colony. This model predicted that the proportion of nonmating cells would continually increase with the size (age) of a colony derived from a single cell. This prediction was confirmed by determining the proportion of cell types in colonies of an HO swi1 strain that was grown for different numbers of cell divisions. Data from subcloning (a greater than alpha) and (alpha greater than a) colonies from a variety of slow-switching mutations and chromosomal rearrangements were used to calculate the frequency of MAT conversions in these strains.  相似文献   

12.
Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a high capacity for mating with MATa strains. The MAT alpha/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MAT alpha homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MAT alpha/MATa):two haploid segregants. Therefore, MAT switches occur in MAT alpha/mata-2 HO/ho cells to produce MAT alpha/Mata cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MAT alpha and subsequently to a functional MATa. Among 32 MAT alpha to MATa switches tested, where the MAT alpha was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, complements the matalpha ste1-5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the Mat alpha locus. No mata-2 was recovered by HO-mediated switching of MAT alpha (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MAT alpha and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (HICKS, STRATHERN and HERSKOWITZ )977b) proposed to explain MAT interconversions.  相似文献   

13.
Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.  相似文献   

14.
The Kluyveromyces lactis genes for sexual pheromones have been analyzed. The alpha-factor gene encodes a predicted polypeptide of 187 amino acid residues containing four tridecapeptide repeats (WSWITLRPGQPIF). A nucleotide blast search of the entire K. lactis genome sequence allowed the identification of the nonannotated putative a-pheromone gene that encodes a predicted protein of 33 residues containing one copy of the dodecapeptide a-factor (WIIPGFVWVPQC). The role of the K. lactis structural genes KlMFalpha1 and KlMFA1 in mating has been investigated by the construction of disruption mutations that totally eliminate gene functions. Mutants of both alleles showed sex-dependent sterility, indicating that these are single-copy genes and essential for mating. MATalpha, Klsst2 mutants, which, by analogy to Saccharomyces cerevisiae, are defective in Galpha-GTPase activity, showed increased sensitivity to synthetic alpha-factor and increased capacity to mate. Additionally, Klbar1 mutants (putatively defective in alpha-pheromone proteolysis) showed delay in mating but sensitivity to alpha-pheromone. From these results, it can be deduced that the K. lactis MATa cell produces the homolog of the S. cerevisiaealpha-pheromone, whereas the MATalpha cell produces the a-pheromone.  相似文献   

15.
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.  相似文献   

16.
MAT alpha cells of the yeast Saccharomyces cerevisiae produce a polypeptide mating pheromone, alpha factor. MATa cells respond to the pheromone by undergoing several inducible responses: the arrest of cell division, the production of a cell surface agglutinin, and the formation of one or more projections on the cell surface commonly termed the "shmoo" morphology. Dose-response curves were determined for each of these inducible responses as a function of alpha factor concentration. It is shown that under conditions commonly employed in previous studies, the dose-response for cell division arrest is determined by the rate at which cells inactivate the alpha factor. In order to achieve conditions where inactivation would not be the dominant parameter, the cell division response to alpha factor was monitored at low cell densities. Under conditions of essentially no alpha factor destruction, the dose of alpha factor at which cells exhibit a half-maximal response for cell division arrest (2.5 X 10(-10) M) is nearly the same as that at which cells exhibit a half-maximal response for agglutination induction (1.0 X 10(-10) M). On the contrary, the half-maximal response for projection formation was obtained at doses of alpha factor 2 orders of magnitude higher (1.4 X 10(-8) M). These results are consistent with the same high affinity alpha factor receptor mediating both cell division arrest and agglutination induction. A different system of lower affinity must mediate projection formation. Alternatively, if the same system and receptor are used, then a much higher occupancy is required for the induction of projections compared to division arrest and agglutination induction.  相似文献   

17.
Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by alpha factor pheromone. When sst1 mutants were mixed with normal SST+ cells, the entire population recovered together from alpha factor arrest, suggesting that SST+ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a "barrier" to the diffusion of alpha factor, were lesions in the same genes. These findings suggest that sst1 mutants, are defective in recovery from alpha factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST+ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to alpha factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of alpha factor for a much longer time than SST+ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of alpha factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective ("sterile").  相似文献   

18.
Two mutants of Saccharomyces cerevisiae have been isolated and characterized. The mutants were constitutively agglutinable at 36 degrees C, the temperature at which wild-type cells agglutinate only after induction by mating pheromone. The mutant cells had other properties specific for the normal alpha cell type, i.e., conjugation with a cells, response to a mating pheromone, and production of alpha mating pheromone. The two mutations, cag1 and cag2, were recessive and expressed only in alpha cells. cag1 is linked very closely to the MAT locus, but cag2 is unlinked to the MAT locus. These cag mutations complemented ste3-1. These results indicate that CAG genes are novel alpha-specific genes involved in the regulation of sex agglutinin synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号