首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative contribution of each anomer of D-glucose to the overall phosphorylation rate of the hexose tested at anomeric equilibrium was examined in rat liver postmicrosomal supernatants under conditions aimed at characterizing the activity of glucokinase, with negligible interference of either hexokinase, N-acetyl-D-glucosamine kinase or glucose-6-phosphatase (acting as a phosphotransferase). Both at 10 degrees and 30 degrees C, the relative contribution of each anomer was unaffected by the concentration of D-glucose. At both temperatures, the alpha/beta ratio for the contribution of each anomer was slightly, but significantly, lower than the alpha/beta ratio of anomer concentrations. These findings, which are consistent with the anomeric specificity of glucokinase in terms of affinity, cooperativity and maximal velocity, reveal that the preferred alpha-anomeric substrate for both glycogen synthesis and glycolysis is generated by glucokinase at a lower rate than is beta-D-glucose-6-phosphate.  相似文献   

2.
Extensive variations of the ring structures of three deoxyaldohexopyranoses, L-fucose, D-quinovose, and L-rhamnose, and four dideoxyaldohexopyranoses, D-digitoxose, abequose, paratose, and tyvelose, were studied by energy minimization with the molecular mechanics algorithm MM3(92). Chair conformers, 4C(1) in D-quinovose and the equivalent 1C(4) in L-fucose and L-rhamnose, overwhelmingly dominate in the three deoxyhexoses; in the D-dideoxyhexoses, 4C(1) is again dominant, but with increased amounts of 1C(4) forms in the alpha anomers of the three 3,6-dideoxyhexoses, abequose, paratose, and tyvelose and in both alpha and beta anomers of the 2,6-dideoxyhexose D-digitoxose. In general, modeled proton-proton coupling constants agreed well with experimental values. Computed anomeric ratios strongly favor the beta configuration except for D-digitoxose, which is almost equally divided between alpha and beta configurations, and L-rhamnose, where the beta configuration is somewhat favored. MM3(92) appears to overstate the prevalence of the equatorial beta anomer in all three deoxyhexoses, as earlier found with fully oxygenated aldohexopyranoses.  相似文献   

3.
GDP-L-fucose-N-acetyl-beta-D-glucosaminide alpha 1----6fucosyltransferase which catalyzes the transfer of fucose from GDP-L-fucose to the asparagine-linked N-acetyl-beta-D-glucosamine of N-linked glycoproteins has been purified 37,000-fold from cultured human skin fibroblasts. The Km values for the substrate asialoagalactotransferrin glycopeptide, and GDP-L-fucose were 66 and 4.2 microM, respectively. The Vmax was 1.4 mumols/mg/min. The key step in enzyme purification was affinity chromatography using the immobilized substrate asialoagalactotransferrin glycopeptide-CH-Sepharose. The affinity-purified enzyme had a minimum substrate requirement for a biantennary oligosaccharide with GlcNAc in terminal position, having a Km value of 55 microM. It was heretofore unexpected that the oligosaccharide would serve as substrate, since the site of enzyme activity is GlcNAc-1-linked to Asn. Although the presence of amino acids on this oligosaccharide enhanced the activity 3-fold, it is proposed that this may be the result of an alpha/beta anomeric mixture (2:1) of oligosaccharide used in these studies with only the beta anomer active as substrate. The implication is that the amino acid is required only to retain the beta anomeric position of the substrate. Removal of GlcNAc or addition of Gal to either the oligosaccharide or glycopeptide destroyed the ability to serve as substrates. In addition, di-N-acetylchitobiose, tri-N-acetylchitotriose and GlcNAc beta 1----Asn were nonpermissible substrates. This rigid substrate requirement is unique among fucosyltransferases thus far reported, since the natural substrates for the other enzymes may be substituted by one of several disaccharides.  相似文献   

4.
Conserved domains of glycosyltransferases.   总被引:5,自引:0,他引:5  
D Kapitonov  R K Yu 《Glycobiology》1999,9(10):961-978
Glycosyltransferases catalyze the synthesis of glycoconjugates by transferring a properly activated sugar residue to an appropriate acceptor molecule or aglycone for chain initiation and elongation. The acceptor can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. A catalytic reaction is believed to involve the recognition of both the donor and acceptor by suitable domains, as well as the catalytic site of the enzyme. To elucidate the structural requirements for substrate recognition and catalytic reactions of glycosyltransferases, we have searched the databases for homologous sequences, identified conserved amino acid residues, and proposed potential domain motifs for these enzymes. Depending on the configuration of the anomeric functional group of the glycosyl donor molecule and of the resulting glycoconjugate, all known glycosyltransferases can be divided into two major types: retaining glycosyltransferases, which transfer sugar residue with the retention of anomeric configuration, and inverting glycosyltransferases, which transfer sugar residue with the inversion of anomeric configuration. One conserved domain of the inverting glycosyltransferases identified in the database is responsible for the recognition of a pyrimidine nucleotide, which is either the UDP or the TDP portion of a donor sugar-nucleotide molecule. This domain is termed "Nucleotide Recognition Domain 1 beta," or NRD1 beta, since the type of nucleotide is the only common structure among the sugar donors and acceptors. NRD1 beta is present in 140 glycosyltransferases. The central portion of the NRD1 beta domain is very similar to the domain that is present in one family of retaining glycosyltransferases. This family is termed NRD1 alpha to designate the similarity and stereochemistry of sugar transfer, and it consists of 77 glycosyltransferases identified thus far. In the central portion there is a homologous region for these two families and this region probably has a catalytic function. A third conserved domain is found exclusively in membrane-bound glycosyltransferases and is termed NRD2; this domain is present in 98 glycosyltransferases. All three identified NRDs are present in archaebacterial, eubacterial, viral, and eukaryotic glycosyltransferases. The present article presents the alignment of conserved NRD domains and also presents a brief overview of the analyzed glycosyltransferases which comprise about 65% of all known sugar-nucleotide dependent (Leloir-type) and putative glycosyltransferases in different databases. A potential mechanism for the catalytic reaction is also proposed. This proposed mechanism should facilitate the design of experiments to elucidate the regulatory mechanisms of glycosylation reactions. Amino acid sequence information within the conserved domain may be utilized to design degenerate primers for identifying DNA encoding new glycosyltransferases.  相似文献   

5.
Streptomyces sp. 142, isolated from a soil sample, produced alpha-fucosidase when cultured in the presence of L-fucose. The enzyme was purified 700-fold with an overall recovery of 17% from a cell-free extract by cation exchange chromatography and gel filtration chromatography. The apparent molecular weight of the purified enzyme was 40,000 by gel filtration chromatography. The enzyme had a pH optimum of 6.0 and was stable at pH 4.5-7.0. Substrate specificity studies with oligosaccharides labeled with 2-aminopyridine as the substrate showed that the enzyme specifically hydrolyzed terminal alpha 1-3 and alpha 1-4 fucosidic linkages in the oligosaccharides but did not hydrolyze alpha 1-2 or alpha 1-6 fucosidic linkages or a synthetic substrate, p-nitro-phenyl alpha-L-fucoside. The purified enzyme released L-fucose from a fucosylated glycoprotein, alpha 1-acid glycoprotein. Thus, the substrate specificities of the Streptomyces alpha-fucosidase resembled those of alpha-fucosidases I and III isolated from almond emulsin rather than those of other microbial alpha-fucosidases.  相似文献   

6.
Binding of alpha- and beta-D-galactopyranosides with different hydrophobic aglycons was compared using substrate protection against N-ethylmaleimide alkylation of single-Cys148 lactose permease. As demonstrated previously, methyl- or allyl-substituted alpha-D-galactopyranosides exhibit a 60-fold increase in binding affinity (K(D) = 0.5 mM), relative to galactose (K(D) = 30 mM), while methyl beta-D-galactopyranoside binds only 3-fold better. In the present study, galactopyranosides with cyclohexyl or phenyl substitutions, both in alpha and beta anomeric configurations, were synthesized. Surprisingly, relative to methyl alpha-D-galactopyranoside, binding of cyclohexyl alpha-D-galactopyranoside to lactose permease is essentially unchanged (K(D) = 0.4 mM), and phenyl alpha-D-galactopyranoside exhibits only a modest increase in binding affinity (K(D) = 0.15 mM). Nitro- or methyl-substituted phenyl alpha-D-galactopyranosides bind with significantly higher affinities (K(D) = 0.014-0.067 mM), and the strongest binding is observed with analogues containing para substituents. In contrast, D-galactopyranosides with a variety of large hydrophobic substituents (isopropyl, cyclohexyl, phenyl, o- or p-nitrophenyl) in beta anomeric configuration exhibit uniformly weak binding (K(D) = 1.0-2.3 mM). The results confirm and extend previous observations that hydrophobic aglycons of D-galactopyranosides increase binding affinity, with a clear predilection toward alpha-substituted sugars. In addition, the data suggest that the primary interaction between the permease and hydrophobic aglycons is directed toward the carbon atom bonded to the anomeric oxygen. The different positioning of this carbon atom in alpha- or beta-D-galactopyranosides thus may provide a rationale for the characteristic binding preference of the permease for alpha anomers.  相似文献   

7.
Rapid quench kinetic experiments on fructose 1,6-bisphosphatase demonstrate a stereospecificity for the alpha anomer of fructose 1,6-bisphosphate relative to the beta configuration. The beta anomer is only utilized after mutarotation to the alpha form in a process that is not enzyme catalyzed. Studies employing analogues of the acyclic keto configuration indicate that the keto form is utilized at a rate less than 5% that of the alpha anomer, a finding also confirmed by computer simulation of the rapid quench data. Chemical trapping experiments of the keto analogue, xylulose 1,5-bisphosphate, and the normal substrate suggest that interconversion of the acyclic and anomeric configurations is retarded by their binding to the enzyme. A hypothesis is advanced attributing substrate inhibition of fructose 1,6-bisphosphatase to possible binding of the keto species.  相似文献   

8.
Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model.  相似文献   

9.
Trehalose is an unusual non-reducing disaccharide that plays a variety of biological roles, from food storage to cellular protection from environmental stresses such as desiccation, pressure, heat-shock, extreme cold, and oxygen radicals. It is also an integral component of the cell-wall glycolipids of mycobacteria. The primary enzymatic route to trehalose first involves the transfer of glucose from a UDP-glucose donor to glucose-6-phosphate to form alpha,alpha-1,1 trehalose-6-phosphate. This reaction, in which the configurations of two glycosidic bonds are set simultaneously, is catalyzed by the glycosyltransferase trehalose-6-phosphate synthase (OtsA), which acts with retention of the anomeric configuration of the UDP-sugar donor. The classification of activated sugar-dependent glycosyltransferases into approximately 70 distinct families based upon amino acid sequence similarities places OtsA in glycosyltransferase family 20 (see afmb.cnrs-mrs.fr/CAZY/). The recent 2.4 A structure of Escherichia coli OtsA revealed a two-domain enzyme with catalysis occurring at the interface of the twin beta/alpha/beta domains. Here we present the 2.0 A structures of the E. coli OtsA in complex with either UDP-Glc or the non-transferable analogue UDP-2-deoxy-2-fluoroglucose. Both complexes unveil the donor subsite interactions, confirming a strong similarity to glycogen phosphorylases, and reveal substantial conformational differences to the previously reported complex with UDP and glucose 6-phosphate. Both the relative orientation of the two domains and substantial (up to 10 A) movements of an N-terminal loop (residues 9-22) characterize the more open "relaxed" conformation of the binary UDP-sugar complexes reported here.  相似文献   

10.
Insulin and IGF-I receptors are homologous disulfide linked alpha 2 beta 2 tetramers. These tetramers are formed biosynthetically when proreceptors containing alpha and beta subunits in a single uninterrupted linear peptide form disulfide linked homodimers and are subsequently proteolytically cleaved at the alpha-beta junctions. Cells expressing both receptors also express hybrid receptors that contain one insulin receptor alpha and beta subunit, and one IGF-I receptor alpha and beta subunit. These presumably form by the association of mixed proreceptors. Hybrid receptors greatly expand the possible repertoire of cellular responses to hormonal stimulation. Although not yet examined in detail, both the hormone binding and the signaling properties of the hybrid receptor appear to be different from that of either insulin or IGF-I receptor. Regulatory mechanisms that involve either insulin or IGF-I receptor, at the level of expression or subsequently, could alter the expression or function of the hybrid receptor or the other receptor. Similarly, pathology in one receptor could affect both the hybrid and other receptor, or perhaps be partially compensated for by a hybrid receptor. The magnitude of these effects could vary greatly in different tissues depending upon the relative level of expression of the different receptor forms. These postulated responses might explain some of the complex heterogeneity and linkage of these receptors that have been observed previously.  相似文献   

11.
J M Sue  J R Knowles 《Biochemistry》1978,17(19):4041-4044
Ribulose-1,5-bisphosphate carboxylase catalyzes the conversion of D ribulose 1,5-bisphosphate and CO2 to 3-phospho-D-glycerate, with retention of the oxygen atoms at both C-2 and C-3 of the substrate. This observation is consistent with mechanistic pathways involving an enediol intermediate and eliminates suggested mechanisms that involve covalent intermediates between the enzyme and ribulose 1,5-bisphosphate in which the substrate oxygen at C-2 or C-3 is compulsorily lost.  相似文献   

12.
Zeng Y  Kong F 《Carbohydrate research》2003,338(9):843-849
Regioselective glycosylation with allyl 4,6-O-benzylidene-alpha,beta-D-glucopyranoside or methyl 4,6-O-benzylidene-alpha,beta-D-glucopyranoside as the acceptor was investigated. It was found that the regioselectivity depends upon donor size and anomeric configuration of the acceptor, i.e., with a monosaccharide donor and an alpha-form acceptor, the (1-->3)-linked product was obtained predominantly or exclusively, while with disaccharide or trisaccharide donors and either an alpha or beta form acceptor, the (1-->2)-linked oligosaccharides were the only products.  相似文献   

13.
1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.  相似文献   

14.
Human hemoglobin, reacted at the four amino termini with 4-isothiocyanatobenzenesulphonic acid (Hb-ICBS), was separated into its constituent chains. Recombination of the ICBS-reacted chains with the unmodified mate chains produced the hybrid tetramers modified at either the beta or the alpha chains: alpha 2 beta 2ICBS and alpha 2ICBS beta 2. All of the modified tetramers show a reduced oxygen affinity and reduced cooperativity; furthermore the oxygen affinity of the Hb-ICBS and alpha 2 beta 2ICBS is unaffected by 2,3-bisphosphoglycerate while the oxygen affinity of alpha 2ICBS beta 2 is decreased in the presence of this organic phosphate. The oxygen affinity of Hb-ICBS and alpha 2ICBS beta 2 is independent of chloride concentration, while the alpha 2 beta 2ICBS hybrid shows a reduced response to this anion. The tetramers alpha 2ICBS beta 2 and alpha 2ICBS beta 2ICBS show a decreased alkaline Bohr effect, which can be rationalized as being due to disruption of the oxygen-linked chloride-binding sites; in the case of alpha 2 beta 2ICBS the Bohr effect is instead (partially) maintained. The functional properties of artificial tetramers have been studied also from a kinetic point of view by CO combination and the results obtained compare satisfactorily with equilibrium data. The possibility of obtaining selectively modified hemoglobins promises to provide further insight into the properties of the oxygen-linked anion-binding sites in hemoglobin.  相似文献   

15.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   

16.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

17.
Twenty-two neutral O-linked oligosaccharides ranging from monosaccharides to octasaccharides were identified in bovine submaxillary-gland-mucin glycoprotein by a combination of liquid secondary-ion mass spectrometry, methylation analysis and 1H-NMR. Only five of these have been previously detected in bovine submaxillary-gland mucin although several have been described from other sources of mucin. The structures include short linear sequences 3-linked to N-acetylgalactosaminitol (GalNAcol) and branched structures based on either a GlcNAc(beta 1-6) [Gal(beta 1-3)]GalNAcol or GlcNAc(beta 1-6)[GlcNAc(beta 1-3)]GalNAcol core region. Oligosaccharides not previously characterised from any source were the disaccharide GalNAc alpha 1-6GalNAcol (GalNAc, N-acetylgalactosamine and the hexasaccharide GlcNAc(beta 1-6) [GalNAc(alpha 1-3)( Fuc (alpha 1-2)]Gal(beta 1-4)GlcNAc(beta 1-3)]GalNAcol (Fuc, L-fucose). Oligosaccharides of the blood-group-A type have not been detected previously in bovine submaxillary-gland mucin although their occurrence on bovine gastric-mucosal glycoproteins has been established by classical immunochemical studies.  相似文献   

18.
The calcineurin (CaN) alpha and beta catalytic subunit isoforms are coexpressed within almost all cell types. The enzymatic properties of CaN heterodimers comprised of the regulatory B subunit (CnB) with either the alpha or beta catalytic subunit were compared using in vitro phosphatase assays. CaN containing the alpha isoform (CnA alpha) has lower K(m) and higher V(max) values than CaN containing the beta isoform (CnA beta) toward the PO4-RII, PO4-DARPP-32(20-38) peptides, and p-nitrophenylphosphate (pNPP). CaN heterodimers containing the alpha or beta catalytic subunit isoform displayed identical calmodulin dissociation rates. Similar inhibition curves for each CaN heterodimer were obtained with the CaN autoinhibitory peptide (CaP) and cyclophilin A/cyclosporin A (CyPA/CsA) using each peptide substrate at K(m) concentrations, except for a five- to ninefold higher IC50 value measured for CaN containing the beta isoform with p-nitrophenylphosphate as substrate. No difference in stimulation of phosphatase activity toward p-nitrophenylphosphate by FKBP12/FK506 was observed. At low concentrations of FKBP12/FK506, CaN containing the alpha isoform is more sensitive to inhibition than CaN containing the beta isoform using the phosphopeptide substrates. Higher concentrations of FKBP12/FK506 are required for maximal inhibition of beta CaN using PO4-DARPP-32(20-38) as substrate. The functional differences conferred upon CaN by the alpha or beta catalytic subunit isoforms suggest that the alpha:beta and CaN:substrate ratios may determine the levels of CaN phosphatase activity toward specific substrates within tissues and specific cell types. These findings also indicate that the alpha and beta catalytic subunit isoforms give rise to substrate-dependent differences in sensitivity toward FKBP12/FK506.  相似文献   

19.
TCR alpha beta+ intestinal intraepithelial lymphocytes (IEL) can express either the typical CD8 alpha beta heterodimer or an unusual CD8 alpha alpha homodimer. Both types of CD8+ IEL require class I molecules for their differentiation, since they are absent in beta2m-/- mice. To gain insight into the role of class I molecules in forming TCR alpha beta+ CD8+ IEL populations, we have analyzed the IEL in mice deficient for either TAP, beta 2m, CD1, or K and D. We find that K-/-D-/- mice have TCR alpha beta+ CD8 alpha alpha+ IEL, although they are deficient for TCR alpha beta+ CD8 alpha beta+ cells. This indicates that at least some TCR alpha beta+ CD8 alpha alpha+ IEL require only nonclassical class I molecules for their development. Surprisingly, the TCR alpha beta+ CD8 alpha alpha+ IEL are significantly increased in K-/-D-/- mice, suggesting a complex interaction between CD8+ IEL and class I molecules that might include direct or indirect negative regulation by K and D, as well as positive effects mediated by nonclassical class I molecules.  相似文献   

20.
T A Koerner  Jr  L W Cary  S C Li    Y T Li 《The Biochemical journal》1981,195(3):529-533
The 13C n.m.r. spectrum of Forssman hapten was obtained at 25.16 MHz in [3H] chloroform/[2H] methanol (1:1, v/v), using purified glycosphinogolipid from canine intestinal mucosa (glycolipid I). All amide, olefin, anomeric, intersaccharide glycosidic ether, amide linkage, methyl and many methylene resonances were resolved and assigned. Analysis of the anomeric region reveals the following pentaglycosylceramide structure as originally proposed [Siddiqui & Hakomori (1971) J. Biol. Chem. 246, 5766-5769]: GalNAc (alpha 1 leads to 3) GalNAc (beta 1 leads to 3) Gal (alpha 1 leads to 4) Gal (beta 1 leads to 1) ceramide. Analysis of the amide, olefin and methylene regions reveals no alpha-hydroxy fatty acyl group and less than or equal to 6 mol% unsaturated fatty acyl groups are present. Chemical-shift assignments are reported for the anomeric and glycosidic ether carbon atoms of intersaccharide-linked alpha-galactose and N-acetyl-alpha-galactosamine residues. Two rules are proposed for the assignment of the anomeric form of 1 leads to 3 and 1 leads to 4 linkages of galactose and N-acetylgalactosamine residues present in the glycone of glyco-conjugates. The present study emphasizes the importance of the anomeric "window" (80-120 p.p.m.) in studies of glycone structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号