共查询到20条相似文献,搜索用时 15 毫秒
1.
Mukhin YV Garnovskaya MN Ullian ME Raymond JR 《The Journal of biological chemistry》2004,279(3):1845-1852
The purposes of this study were to test 1) the relationship between two widely studied mitogenic effector pathways, and 2) the hypothesis that sodium-proton exchanger type 1 (NHE-1) is a regulator of extracellular signal-regulated protein kinase (ERK) activation in rat aortic smooth muscle (RASM) cells. Angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) stimulated both ERK and NHE-1 activities, with activation of NHE-1 preceding that of ERK. The concentration-response curves for 5-HT and Ang II were superimposable for both processes. Inhibition of NHE-1 with pharmacological agents or by isotonic replacement of sodium in the perfusate with choline or tetramethylammonium greatly attenuated ERK activation by 5-HT or Ang II. Similar maneuvers significantly attenuated 5-HT- or Ang II-mediated activation of MEK and Ras but not transphosphorylation of the epidermal growth factor (EGF) receptor. EGF receptor blockade attenuated ERK activation, but not NHE-1 activation by 5-HT and Ang II, suggesting that the EGF receptor and NHE-1 work in parallel to stimulate ERK activity in RASM cells, converging distal to the EGF receptor but at or above the level of Ras in the Ras-MEK-ERK pathway. Receptor-independent activation of NHE-1 by acute acid loading of RASM cells resulted in the rapid phosphorylation of ERK, which could be blocked by pharmacological inhibitors of NHE-1 or by isotonic replacement of sodium, closely linking the proton transport function of NHE-1 to ERK activation. These studies identify NHE as a new regulator of ERK activity in RASM cells. 相似文献
2.
We hypothesized that glucose-mediated alterations in vascular smooth muscle cell signal transduction contribute to diabetic complications. We found enhanced AngII activation of Akt and extracellular ERK1/2 in vascular smooth muscle cells incubated with high glucose (27.5 mM) compared with low glucose (5.5 mM). Because AngII-mediated transactivation of the epidermal growth factor receptor (EGFR) is important in Akt and ERK1/2 activation, we studied the effects of glucose on EGFR function. The EGFR in cells cultured for 48 h in low glucose was smaller (145 kDa) than the EGFR in cells cultured with high glucose (170 kDa). The shift from the 170-kDa isoform to the 145-kDa isoform was reversible and dependent upon glucose concentration with EC50 approximately 1 mM. N-Glycosylation was responsible because peptide N-glycosidase F treatment of isolated 170-kDa EGFR yielded a single band at 145 kDa. Cell surface biotinylation showed that the 145-kDa EGFR was present on plasma membrane. AngII and other G-protein-coupled receptor ligands known to transactivate EGFR phosphorylated the 170-kDa EGFR but not the 145-kDa EGFR, whereas EGF, heparin-binding EGF-like growth factor, and transforming growth factor-alpha phosphorylated both receptors. Subcellular fractionation showed that the 145-kDa receptor localized to a different plasma membrane domain than the 170-kDa receptor. These results establish a novel mechanism by which glucose-dependent EGFR N-glycosylation modulates AngII signal transduction and suggest a potential mechanism for pathogenic effects of AngII in diabetic vasculopathy. 相似文献
3.
Cyclic AMP enhances inositol trisphosphate-induced mobilization of intracellular Ca2+ in cultured aortic smooth muscle cells 总被引:4,自引:0,他引:4
The effect of cAMP on ATP-induced intracellular Ca+ mobilization in cultured rat aortic smooth muscle cells was investigated. Treatment of cells for 3 min at 37 degrees C with dibutyryl cAMP, a membrane-permeable analogue of cAMP, at concentration up to 500 microM resulted in 1.5- to 1.7-fold increase in the peak cytosolic Ca2+ concentration when cells were stimulated with 3 to 200 microM ATP either in the presence or absence of extracellular Ca2+. Similar results were obtained when 0.5 mM 8-Br-cAMP or 10 microM forskolin was used instead of dibutyryl cAMP. In contrast to the Ca2+ response, dibutyryl cAMP did not affect ATP-induced formation of inositol trisphosphate (IP3). Furthermore, the dibutyryl cAMP treatment did not affect the size of the Ca2+ response elicited by 10 microM ionomycin. These results suggest that intracellular cAMP potentiates the ATP-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ store(s), rather than by increasing the ATP-induced production of IP3 or by increasing the size of the intracellular Ca2+ store. Using saponin-permeabilized cells, we have shown directly that cAMP enhances Ca2+ mobilization by potentiating the Ca2+-releasing effect of IP3 from the intracellular Ca2+ store. 相似文献
4.
Galanin has numerous effects on gastrointestinal motility in different species; however, its cellular basis of action in mediating these effects is unclear. Dispersed gastric smooth muscle cells have been shown to possess high-affinity galanin receptors that increase cAMP and cause relaxation. Recent studies show some smooth muscle relaxants such as VIP cause relaxation by both cAMP-dependent and -independent mechanisms. It is unknown if galanin's cellular basis of relaxation is similar or different from that of VIP. To investigate galanin's relaxant effect and compare it to VIP's effect, dispersed smooth muscle cells from guinea pig stomach were prepared by collagenase digestion. The mean length in resting cells was 110 ± 2 μm and, with carbachol treatment, contracted to 89 ± 2 μm. VIP and galanin alone had no effect on cell length, but each caused a dose-dependent inhibition of carbachol-induced contraction and both had an EC50 of 3–7 nM. Galanin (1 μM) and VIP (1 μM) increased cellular cAMP from 118 ± 10 pmol/106 cells in control to 212 ± 14 and 214 ± 12 pmol/106 cells, respectively. The protein kinase A inhibitor, Rp-cAMPS, at 100 μM, completely inhibited the relaxant effect of an EC50 concentration of galanin (3 nM), but only inhibited that by VIP by 80% (p < 0.05). Adding the nitric oxide inhibitor,
-NNA (
), at 100 μM did not alter the length of resting cells or inhibit carbachol-induced contraction. However,
-NNA (100 μM) decreased VIP-induced relaxation by 45%, whereas it had no effect on galanin-induced relaxation. To determine the ability of each peptide to activate nitric oxide, the incorporation of [3H]arginine into [3H]citrulline was determined. Galanin (1 μM) did not cause nitric oxide generation whereas VIP (1 μM) increased nitric oxide generation above the control by 97 ± 14% (p < 0.01). These results demonstrated that with galanin, in contrast to VIP, nitric oxide is not involved in its ability to cause gastric smooth muscle cell relaxation. The relaxant action of galanin can be accounted for completely by its ability to activate protein kinase A and therefore resembles recent results with β-adrenergic agents. 相似文献
5.
Leung GP Man RY Tse CM 《American journal of physiology. Heart and circulatory physiology》2005,288(6):H2756-H2762
The etiology of the atherosclerosis that occurs in diabetes mellitus is unclear. Adenosine has been shown to inhibit growth of rat aortic smooth muscle cells. Nucleoside transporters play an integral role in adenosine function by regulating adenosine levels in the vicinity of adenosine receptors. Therefore, we studied the effect of 25 mM d-glucose, which mimics hyperglycemia of diabetes, on adenosine transport in cultured human aortic smooth muscle cells (HASMCs). Although RT-PCR demonstrated the presence of equilibrative nucleoside transporter-1 (ENT-1) and ENT-2 mRNA, functional studies revealed that adenosine transport in HASMCs was predominantly mediated by ENT-1 and inhibited by nitrobenzylmercaptopurine riboside (NBMPR, IC(50) = 0.69 +/- 0.05 nM). Adenosine transport in HASMCs was increased by >30% after treatment for 48 h with 25 mM d-glucose, but not with equimolar d-mannitol and l-glucose. Kinetic studies showed that d-glucose increased V(max) of adenosine transport without affecting K(m). Similarly, d-glucose increased B(max) of high-affinity [(3)H]NBMPR binding, while the dissociation constant (K(d)) was not changed. Consistent with these observations, 25 mM d-glucose increased mRNA and protein expression of ENT-1. Treatment of serum-starved cells with the selective inhibitors of MAPK/ERK, PD-98059 (40 microM) and U-0126 (10 microM), abolished the effect of d-glucose on ENT-1. We conclude that d-glucose upregulates the protein and message expression and functional activity of ENT-1 in HASMCs, possibly via MAPK/ERK-dependent pathways. Pathologically, the increase in ENT-1 activity in diabetes may affect the availability of adenosine in the vicinity of adenosine receptors and, thus, alter vascular functions in diabetes. 相似文献
6.
We examined the effects of cyclic AMP (cAMP) on the intracellular Ca2+ release in both the intact and skinned arterial smooth muscle. The amount of Ca2+ in the sarcoplasmic reticulum (SR) was estimated indirectly by caffeine-induced contraction of the skinned preparation and directly by caffeine-stimulated 45Ca efflux from the previously labeled skinned preparation. The norepinephrine-induced release contraction was markedly enhanced by dibutyryl cAMP (dbcAMP) and reduced by propranolol. The stimulatory effect of dbcAMP was best observed when the muscle was exposed to 10(-5) M dbcAMP and 2 X 10(-6) M norepinephrine was used to induce the release contraction. 10(-5) M cAMP had no effect on the Ca2+-induced contraction or on the pCa-tension relationship in the skinned preparation. This concentration of cAMP increased Ca2+ uptake into the SR of the skinned preparation when the Ca2+ in the SR was first depleted. 10(-5) M cAMP stimulated Ca2+-induced Ca2+ release from the SR after optimal Ca2+ accumulation by the SR. The results indicate that the stimulatory effect of cAMP on the norepinephrine-induced release contraction could be due to enhancement of the Ca2+-induced Ca2+ release from the SR in arterial smooth muscle. 相似文献
7.
《The Journal of cell biology》1989,109(6):2887-2894
The enzymatic activity of filamentous dephosphorylated smooth muscle myosin has been difficult to determine because the polymer disassembles to the folded conformation in the presence of MgATP. Monoclonal antirod antibodies were used here to "fix" dephosphorylated myosin in the filamentous state. The steady-state actin-activated ATPase of phosphorylated filaments was 30-100-fold higher than that of antibody- stabilized dephosphorylated filaments, suggesting that phosphorylation can activate ATPase activity independent of changes in assembly. The degree of regulation may exceed 100-fold, because steady-state measurements slightly overestimate the rate of product release from dephosphorylated filaments. Single-turnover experiments in the absence of actin showed that although dephosphorylated folded myosin released products at the low rate of 0.0005 s-1 (Cross, R. A., K. E. Cross, A. Sobieszek. 1986. EMBO [Eur. Mol. Biol. Organ.] J. 5:2637-2641) the rate of product release from dephosphorylated filaments was only 3-12-fold higher, depending on the ionic strength. The addition of actin did not increase this rate to any appreciable extent. Dephosphorylated filaments and dephosphorylated heavy meromyosin (Sellers, J. R. 1985. J. Biol. Chem. 260:15815-15819) thus have similar low rates of phosphate release both in the presence and absence of actin. These results show that light chain phosphorylation alone, without invoking other mechanisms, is an effective switch for regulating the activity of smooth muscle myosin filaments. 相似文献
8.
Shaw JH Xiang L Shah A Yin W Lloyd PG 《American journal of physiology. Cell physiology》2011,300(2):C349-C355
When supply arteries become occluded, blood is diverted through preexisting collateral vessels. Shear stress arising from this increase in blood flow provides the initial physiological stimulus for expansion of the collateral circulation, a process termed arteriogenesis. Endothelial cells (EC) respond to increased shear stress by releasing a variety of mediators that can act on underlying smooth muscle cells (SMC). Placenta growth factor (PLGF) is known to mediate certain aspects of arteriogenesis, such as recruitment of monocytes to the vessel wall. Therefore, we tested whether SMC PLGF expression is influenced by mediators released by EC. We used A10 SMC cultured with medium that had been conditioned by EOMA EC for 4 days as a model. We found that EC-conditioned medium is able to upregulate PLGF gene expression in A10 SMC. Further experiments identified hydrogen peroxide (H(2)O(2)) as a key mediator of this response. We confirmed the physiological relevance of this mechanism in primary human coronary artery SMCs by demonstrating that exogenous H(2)O(2) specifically upregulates PLGF gene and protein expression. We also demonstrated that the physiological stimulus of shear stress raises endogenous H(2)O(2) levels in media into the range found to increase PLGF expression. In this study, we demonstrate that EC-released H(2)O(2) acts as a positive regulator of PLGF gene and protein expression in vascular SMC. To our knowledge, this is the first study to describe H(2)O(2) as a regulator of PLGF expression and therefore an upstream mediator of PLGF-driven arteriogenesis. 相似文献
9.
Angiotensin-I generating activity has been detected in homogenates of arterial tissue but it remains unclear whether this enzymatic activity results from the presence of renin itself or from the action of other proteases such as cathepsin D. In an assay system employing anephric dog plasma as substrate and buffered to pH 7.4, we detected angiotensin-I generating activity in homogenates of canine aortic smooth muscle cells. This enzymatic activity was in large part inhibitable by renin-specific antisera raised to pure canine renal renin. Immunofluorescent study of cultured arterial smooth muscle cells was also performed using renin specific antiserum. Granular cytoplasmic immunofluorescence was detected when specific antirenin serum was used but not when preimmune serum was employed. The addition of pure canine renin to the renin antiserum during staining suppressed the granular immunofluorescence confirming the specificity of staining. Finally, biosynthetic radiolabelling studies were performed. Immunoprecipitation of newly synthesized proteins with antirenin serum and staphylococcal protein A followed by gel electrophoresis and autoradiography demonstrated the synthesis of an immunoreactive protein with the molecular weight of renin. Pretreatment of the antirenin serum with pure canine renin resulted in the disappearance of this immunoreactive protein band. Thus these studies provide multiple lines of evidence to indicate the synthesis of renin by vascular smooth muscle cells. 相似文献
10.
Shim JO Shin CY Lee TS Yang SJ An JY Song HJ Kim TH Huh IH Sohn UD 《Cellular signalling》2002,14(4):365-372
We investigated what adenosine receptor type exists and the signaling pathways on the contraction of circular muscle cells isolated by enzymatic digestion from the cat esophagus. Adenosine or the selective A1 receptor agonist R-PIA causes a concentration-dependent contraction. After pretreatment with A1 receptor antagonist, DPCPX, adenosine-mediated contraction was abolished. Adenosine-induced contraction was significantly increased when A1 receptors were preserved by pretreatment with DPCPX followed by inactivation of all unprotected receptors with N-ethylmaleimide. Adenosine- or R-PIA-induced contraction was significantly augmented in the preserved cells and the increase was abolished in the presence of the A1 receptor antagonist DPCPX. PTX abolished contraction induced by adenosine or R-PIA, implying that contraction activated by A1 receptor was coupled to a pertussis toxin (PTX)-sensitive G(i) protein. After permeabilization, contraction was inhibited by G(i2), but not by G(i1) and G(i3), antibodies. These data suggest that adenosine-induced contraction of esophagus depends on PTX-sensitive G(i2.) Adenosine- or R-PIA-induced contraction of esophageal smooth muscle cells was not affected by the phospholipase D (PLD) inhibitor rho-chloromercuribenzoic acid (rhoCMB), phospholipase A(2) (PLA(2)) inhibitor DEDA or PKC antagonist chelerythrine, but was significantly abolished by phospholipase C (PLC) inhibitor, neomycin. PLC-beta3 antibody inhibited R-PIA-induced contraction. R-PIA-induced contraction of esophageal muscle cells was inhibited by IP(3) receptor antagonist heparin, which suggests that the contraction of esophageal smooth muscle cells is dependent on phosphatidylinositol-specific phospholipase (PI-PLC) and IP(3). In conclusion, adenosine- and R-PIA-induced contraction in cat esophageal smooth muscle cell was mediated by A1 receptor. A1 receptor is coupled to PTX-sensitive G protein G(i2), which results in the activation of PI-PLC-beta3. PI hydrolysis by PI-PLC forms IP(3), which binds to IP(3) receptor on endoplasmic reticulum, resulting in the release of intracellular Ca(2+). 相似文献
11.
Kenneth S. Ramos Kathryn K. McMahon Celestine Alipui Diane Demick 《Cell biology and toxicology》1991,7(2):111-128
Studies were conducted to determine if in vivo exposure to dinitrotoluenes (DNT), which is associated with circulatory disorders of atherosclerotic etiology in humans, is associated with alterations of vascular smooth muscle cells (SMC) consistent with the atherogenic process. Sprague-Dawley rats (150-180 g) were injected IP for 5 days/week for 8 weeks with 2,4- or 2,6-DNT (0.5, 5, or 10 mg/kg) or medium chain triglyceride (MCT) oil. Histopathologic evaluation of aortae from animals exposed to either isomer showed dysplasia and rearrangement of SMC at all doses tested. Reduced 3H-thymidine incorporation was observed in primary cultures of aortic SMC from DNT-exposed animals relative to vehicle controls. This inhibitory response was maintained for up to two passages in culture after which a significant increase in thymidine incorporation was observed. Exposure of SMC from naive animals to DNT in vitro (1–100 µM) did not alter the extent of thymidine incorporation in cycling or growth-arrested cultures. In contrast, exposure to 2,4- or 2,6-diaminotoluene (DAT) (1–100 µM), carcinogens which share toxic metabolic intermediates in common with DNT, inhibited replicative DNA synthesis and stimulated unscheduled DNA synthesis in cycling and growth-arrested cultures of SMC, respectively. Our results suggest that modulation of DNA synthesis in aortic SMC by DNT metabolites generated in vivo contribute to the development of vascular lesions.Abbreviation DAT diaminotuluene - tDNT technical grade dinitrotoluene - DNT dinitrotoluenes - HU hydroxyurea - IP intraperitoneal - LDH lactate dehydrogenase - MCT oil medium chain triglyceride - NPTC non-protein thiol content - RDS replicative DNA synthesis - SEM standard error of the mean - SMC smooth muscle cells - UDS unscheduled DNA synthesis 相似文献
12.
Corticotropin-releasing factor receptor type 2beta (CRF R2beta) is a member of the Class B heptahelical G protein-coupled receptors. This receptor is positively coupled to adenylate cyclase and is bound preferentially by the CRF-related peptides, urocortin (Ucn), Ucn II and Ucn III. In the rodent, CRF R2beta messenger RNA (mRNA) is expressed in the cardiovascular system, where its levels can be modulated by Ucn. In the present study, we investigated regulation of CRF R2beta levels by Ucn in A7r5 aortic smooth muscle cells. Ribonuclease protection assays show that A7r5 cells expressed the CRF R2beta subtype, which had two isoforms differing in one codon at the junction of exons 3 and 4. Ucn induced accumulation of intracellular cAMP via CRF R2beta in this cell line. In addition to the treatment with Ucn, cAMP agonists or analogues themselves caused a significant decrease in CRF R2beta mRNA levels. Blockade of Ucn- or cAMP-induced decreases in CRF R2beta mRNA levels by H7, a broad protein kinase inhibitor, suggested that a protein kinase pathway might be involved in this regulation. H89, a protein kinase A inhibitor, partially blocked Ucn- or cAMP-induced decreases in CRF R2beta mRNA levels. Thus, Ucn induces intracellular cAMP to downregulate CRF R2beta mRNA expression in A7r5 cells. 相似文献
13.
14.
15.
16.
Rodriguez JA De la Cerda P Collyer E Decap V Vio CP Velarde V 《American journal of physiology. Heart and circulatory physiology》2006,290(1):H30-H36
Vascular smooth muscle cell proliferation and migration play an important role in the pathophysiology of several vascular diseases, including atherosclerosis. Prostaglandins that have been implicated in this process are synthesized by two isoforms of cyclooxygenase (COX), with the expression of the regulated COX-2 isoform increased in atherosclerotic plaques. Bradykinin (BK), a vasoactive peptide increased in inflammation, induces the formation of prostaglandins through specific receptor activation. We hypothesized that BK plays an important role in the regulation of COX-2, contributing to the increase in production of prostaglandins in vascular smooth muscle cells. Herein we examined the signaling pathways that participate in the BK regulation of COX-2 protein levels in primary cultured aortic vascular smooth muscle cells. We observed an increase in COX-2 protein levels induced by BK that was maximal at 24 h. This increase was blocked by a B2 kinin receptor antagonist but not a B1 receptor antagonist, suggesting that the B2 receptor is involved in this pathway. In addition, we conclude that the activation of mitogen-activated protein kinases p42/p44, protein kinase C, and nitric oxide synthase is necessary for the increase in COX-2 levels induced by BK because either of the specific inhibitors for these enzymes blocked the effect of BK. Using a similar approach, we further demonstrated that reactive oxygen species and cAMP were not mediators on this pathway. These results suggest that BK activates several intracellular pathways that act in combination to increase COX-2 protein levels. This study suggests a role for BK on the evolution of the atheromatous plaque by virtue of controlling the levels of COX-2. 相似文献
17.
18.
19.
20.