首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

2.
Steady-state and time-resolved fluorescence spectroscopy was used to follow the local and global changes in structure and dynamics during chemical and thermal denaturation of unlabeled human serum albumin (HSA) and HSA with an acrylodan moiety bound to Cys34. Acrylodan fluorescence was monitored to obtain information about unfolding processes in domain I, and the emission of the Trp residue at position 214 was used to examine domain II. In addition, Trp-to-acrylodan resonance energy transfer was examined to probe interdomain spatial relationships during unfolding. Increasing the temperature to less than 50 degrees C or adding less than 1.0 M GdHCl resulted in an initial, reversible separation of domains I and II. Denaturation by heating to 70 degrees C or by adding 2.0 M GdHCl resulted in irreversible unfolding of domain II. Further denaturation of HSA by either method resulted in irreversible unfolding of domain I. These results clearly demonstrate that HSA unfolds by a pathway involving at least three distinct steps. The low detection limits and high information content of dual probe fluorescence should allow this technique to be used to study the unfolding behavior of entrapped or immobilized HSA.  相似文献   

3.
The folding of a multi‐domain trimeric α‐helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two‐state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter‐subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate‐limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop, from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re‐association of the trimer might be the limiting factor to obtain folded wild‐type AcrB.  相似文献   

4.
Light-induced activation of the LOV2-Jα domain of the photoreceptor phototropin from oat is believed to involve the detachment of the Jα helix from the central β-sheet and its subsequent unfolding. The dynamics of these conformational changes were monitored by time-resolved emission spectroscopy with 100 ns time resolution. Three transitions were detected during the LOV2-Jα photocycle with time constants of 3.4 μs, 500 μs, and 4.3 ms. The fastest transition is due to the decay of the flavin phosphorescence in the transition of the triplet LOV(L)(660) state to the singlet LOV(S)(390) signaling state. The 500 μs and 4.3 ms transitions are due to changes in tryptophan fluorescence and may be associated with the dissociation and unfolding of the Jα helix, respectively. They are absent in the transient absorption signal of the flavin chromophore. The tryptophan fluorescence signal monitors structural changes outside the chromophore binding pocket and indicates that there are at least three LOV(S)(390) intermediates. Since the 500 μs and 4.3 ms components are absent in a construct without the Jα helix and in the mutant W557S, the fluorescence signal is mainly due to tryptophan 557. The kinetics of the main 500 μs component is strongly temperature dependent with activation energy of 18.2 kcal/mol suggesting its association with a major structural change. In the structurally related PAS domain protein PYP the N-terminal cap dissociates from the central β-sheet and unfolds upon signaling state formation with a similar time constant of ~1 ms. Using transient fluorescence we obtained a nearly identical activation energy of 18.5 kcal/mol for this transition.  相似文献   

5.

Background

Papain-like proteases (CA1) are synthesized as inactive precursors carrying an N-terminal propeptide, which is further removed under acidic conditions to generate active enzymes.

Methods

To have a better insight into the mechanism of activation of this protease family, we compared the pH unfolding of the zymogen and the mature form of the mite cysteine protease Der p 1.

Results

We showed that the presence of the propeptide does not significantly influence the pH-induced unfolding of the catalytic domain but does affect its fluorescence properties by modifying the exposure of the tryptophan 192 to the solvent. In addition, we demonstrated that the propeptide displays weaker pH stability than the protease domain confirming that the unfolding of the propeptide is the key event in the activation process of the zymogen.

General significance

Finally, we show, using thermal denaturation and enzymatic activity measurements, that whatever the pH value, the propeptide does not stabilize the structure of the catalytic domain but very interestingly, prevents its autolysis.  相似文献   

6.
Human serum albumin (HSA) contains three alpha-helical domains (I-III). The unfolding process of these domains was monitored using covalently bound fluorescence probes; domain I was monitored by N-(1-pyrene)maleimide (PM) conjugated with cys-34, domain II was monitored by the lone tryptophan residue and domain III was followed by p-nitrophenyl anthranilate (NPA) conjugated with Tyrosine-411 (Tyr-411). Using domain-specific probes, we found that guanidium hydrochloride-induced unfolding of HSA occurred sequentially. The unfolding of domain II preceded that of domain I and the unfolding of domain III followed that of domain I. In addition, the domains I and III refolded within the dead time of the fluorescence recovery experiment while the refolding of domain II occurred slowly. The results suggest that individual domain of a multi-domain protein can fold and unfold sequentially.  相似文献   

7.
Manyusa S  Mortuza G  Whitford D 《Biochemistry》1999,38(43):14352-14362
The guanidine hydrochloride- (GuHCl-) induced unfolding and refolding of a recombinant domain of bovine microsomal cytochrome b(5) containing the first 104 amino acid residues has been characterized by both transient and equilibrium spectrophotometric methods. The soluble domain is reversibly unfolded and the equilibrium reaction may be monitored by changes in absorbance and fluorescence that accompany denaturation of the native protein. Both probes reveal a single cooperative transition with a midpoint at 3 M GuHCl and lead to a value for the protein stability (DeltaG(uw)) of 26.5 kJ mol(-1). This stability is much higher than that reported for the corresponding form of the apoprotein (approximately 7 kJ mol(-1)). Transient changes in fluorescence and absorbance during protein unfolding exhibit biphasic profiles. A fast phase occupying approximately 30% of the total amplitude is observed at high denaturant concentrations and becomes the dominant process within the transition region. The rates associated with each process show a linear dependency on GuHCl concentration, and at zero denaturant concentration the unfolding rates (k(uw)) are 4.5 x 10(-5) s(-1) and 5.2 x 10(-6) s(-1) at 25 degrees C. The pattern of unfolding is not correlated with covalent heterogeneity, since a wide range of variants and site-directed mutants exhibit identical profiles, nor is the unfolding correlated with cis-trans Pro isomerization in the native state. In comparison with the apo form of cytochrome b(5), the kinetics of refolding and unfolding are more complex and exhibit very different transition states. The data support a model for unfolding in which heme-protein interactions give rise to two discernible rates of unfolding. From an analysis of the activation parameters associated with each process it is established that two structurally similar transition states differing by less than 5 kJ mol(-1) exist in the unfolding reaction. Protein refolding exhibits monophasic kinetics but with distinct curvature apparent in plots of ln k(obs) versus denaturant concentration. The data are interpreted in terms of alternative routes for protein folding in which a "fast track" leads to the rapid ordering of structure around Trp26 for refolding while a slower route requires additional reorganization around the hydrophobic core.  相似文献   

8.
Equilibrium and kinetic studies of the unfolding and autolysis of the two domain protein thermolysin in guanidine hydrochloride are described. Enzyme activity, circular dichroism, fluorescence, sedimentation, size exclusion chromatography, and viscosity measurements were used to monitor conformational transitions and characterize the native and denatured states. The observation of biphasic transitions for the unfolding of apothermolysin and the spectroscopic changes associated with each phase of the overall unfolding process suggest unfolding of the N-terminal domain at less than 1 M guanidine hydrochloride, followed by the unfolding of the C-terminal domain, with the transition midpoint at 3 M guanidine hydrochloride. The refolding of the C-terminal domain is reversible; however, refolding of the N-terminal domain could not be demonstrated owing to protein aggregation. A quantitative analysis of the two transitions suggest that the unfolding of the two structural domains of thermolysin is not completely independent. Attempts to measure the unfolding of holothermolysin were hampered by autolysis. However, it was possible to show that at least three calcium ions serve to stabilize thermolysin against autolysis or unfolding in guanidine hydrochloride. Similar stabilization was observed for thermolysin with a single terbium ion bound at calcium site S(1). This result is consistent with our earlier findings, which suggest that calcium bound at sites S(1)-S(2) are located at a critical point on the unfolding pathway of thermolysin and serve to act as an interdomain lock.  相似文献   

9.
Sato S  Kuhlman B  Wu WJ  Raleigh DP 《Biochemistry》1999,38(17):5643-5650
The folding and unfolding behavior of the multidomain ribosomal protein L9 from Bacillus stearothermophilus was studied by a novel combination of stopped-flow fluorescence and nuclear magnetic resonance (NMR) spectroscopy. One-dimensional 1H spectra acquired at various temperatures show that the C-terminal domain unfolds at a lower temperature than the N-terminal domain (Tm = 67 degrees C for the C-terminal domain, 80 degrees C for the N-terminal domain). NMR line-shape analysis was used to determine the folding and unfolding rates for the N-terminal domain. At 72 degrees C, the folding rate constant equals 2980 s-1 and the unfolding rate constant equals 640 s-1. For the C-terminal domain, saturation transfer experiments performed at 69 degrees C were used to determine the folding rate constant, 3.3 s-1, and the unfolding rate constant, 9.0 s-1. Stopped-flow fluorescence experiments detected two resolved phases: a fast phase for the N-terminal domain and a slow phase for the C-terminal domain. The folding and unfolding rate constants determined by stopped-flow fluorescence are 760 s-1 and 0.36 s-1, respectively, for the N-terminal domain at 25 degrees C and 3.0 s-1 and 0.0025 s-1 for the C-terminal domain. The Chevron plots for both domains show a V-shaped curve that is indicative of two-state folding. The measured folding rate constants for the N-terminal domain in the intact protein are very similar to the values determined for the isolated N-terminal domain, demonstrating that the folding kinetics of this domain is not affected by the rest of the protein. The remarkably different rate constants between the N- and C-terminal domains suggest that the two domains can fold and unfold independently. The folding behavior of L9 argues that extremely rapid folding is not necessarily functionally important.  相似文献   

10.
The type 1 human immunodeficiency virus presents a conical capsid formed by several hundred units of the capsid protein, CA. Homodimerization of CA occurs via its C-terminal domain, CA-C. This self-association process, which is thought to be pH-dependent, seems to constitute a key step in virus assembly. CA-C isolated in solution is able to dimerize. An extensive thermodynamic characterization of the dimeric and monomeric species of CA-C at different pHs has been carried out by using fluorescence, circular dichroism (CD), absorbance, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and size-exclusion chromatography (SEC). Thermal and chemical denaturation allowed the determination of the thermodynamic parameters describing the unfolding of both CA-C species. Three reversible thermal transitions were observed, depending on the technique employed. The first one was protein concentration-dependent; it was observed by FTIR and NMR, and consisted of a broad transition occurring between 290 and 315 K; this transition involves dimer dissociation. The second transition (Tm approximately 325 K) was observed by ANS-binding experiments, fluorescence anisotropy, and near-UV CD; it involves partial unfolding of the monomeric species. Finally, absorbance, far-UV CD, and NMR revealed a third transition occurring at Tm approximately 333 K, which involves global unfolding of the monomeric species. Thus, dimer dissociation and monomer unfolding were not coupled. At low pH, CA-C underwent a conformational transition, leading to a species displaying ANS binding, a low CD signal, a red-shifted fluorescence spectrum, and a change in compactness. These features are characteristic of molten globule-like conformations, and they resemble the properties of the second species observed in thermal unfolding.  相似文献   

11.
Replication protein A (RPA) is a heterotrimeric, multidomain, single-stranded DNA-binding protein. Using spectroscopic methods and methylene carbene-based chemical modification methods, we have identified conformational intermediates in the denaturation pathway of RPA. Intrinsic protein fluorescence studies reveal unfolding profiles composed of multiple transitions, with midpoints at 1.5, 2.7, 4.2, and 5.3 M urea. CD profiles of RPA unfolding are characterized by a single transition. RPA is stabilized with respect to the CD-monitored transition when bound to a dA15 oligonucleotide. However, oligonucleotide binding appears to exert little, if any, effect on the first fluorescence transition. Methylene carbene chemical modification, coupled with MALDI-TOF mass spectrometry analysis, was also used to monitor unfolding of several specific RPA folds of the protein. The unfolding profiles of the individual structures are characterized by single transitions similar to the CD-monitored transition. Each fold, however, unravels with different individual characteristics, suggesting significant autonomy. Based on results from chemical modification and spectroscopic analyses, we conclude the initial transition observed in fluorescence experiments represents a change in the juxtaposition of binding folds with little unraveling of the domain structures. The second transition represents the unfolding of the majority of fold structure, and the third transition observed by fluorescence correlates with the dissociation of the 70- and 32-kD subunits.  相似文献   

12.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

13.
Because the ligand bound to the ligand-binding domain (LBD) of nuclear hormone receptors is completely enveloped by protein, it is thought that the process of ligand binding or unbinding must involve a significant conformational change of this domain. We have used the intrinsic tryptophan fluorescence of the estrogen receptor-alpha (ERalpha) or estrogen receptor-beta (ERbeta) LBD, as well as bis-anilinonaphthalenesulfonate (bis-ANS), a probe for accessible interior regions of protein, to follow the guanidine-hydrochloride (Gua-HCl)-induced unfolding of this domain. In both cases, we find that the ER-LBD unfolding follows a two-phase process. At low Gua-HCl, the ER-LBD undergoes partial unfolding, whereas at high Gua-HCl, this domain undergoes a global unfolding, with bis-ANS binding preferentially to the partially unfolded state. The partially unfolded state of the ERalpha-LBD induced by denaturant does not bind ligand stably, but it may resemble an intermediate that this domain accesses transiently under native conditions that allow ligands to enter or exit the ligand-binding pocket.  相似文献   

14.
Krishnakumar SS  Panda D 《Biochemistry》2002,41(23):7443-7452
Prodan (6-propionyl-2-(dimethylamino)-naphthalene), a competitive inhibitor of warfarin binding to human serum albumin (HSA) at drug site I, was used to determine the inter- and intradomain distances of HSA. The fluorescence resonance energy transfer (FRET) distances between prodan and Trp-214, prodan and 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CM)-modified Cys-34, and Trp-214 and CM-Cys-34 were determined to be 25.5 +/- 0.5 A, 33.1 +/- 0.8 A, and 32.4 +/- 1 A, respectively. FRET analysis showed that low concentration of palmitic acid (5 microM) increased the interdomain distance between the Trp-214 in domain II and CM-Cys-34 in domain I by approximately 5 A without perturbing the secondary structure of HSA and the immediate environment of Trp-214. Palmitic acid (5 microM) increased the prodan fluorescence by increasing the quantum yield of bound prodan without altering the tryptophan environment. However, palmitic acid (>10 microM) decreased the prodan fluorescence and increased the tryptophan fluorescence. Our results indicate that the high affinity palmitic acid binding site is located at the interface of domains I and II. On the basis of our measurements, a schematic model representing the drug site-1, Trp-214, and Cys-34 along with the palmitic acid sites has been constructed. In addition, prodan fluorescence, FRET, and ligand binding were used to monitor guanidine hydrochloride-induced denaturation of HSA. An analysis of the equilibrium unfolding data suggests that HSA undergoes a two-state unfolding transition with no detectable intermediate. However, kinetic analysis using multiple probes and thermal denaturation studies showed that the unfolding of the prodan site in HSA preceded the unfolding of tryptophan environment. In addition, the separation of domain I and II occurred before the global unfolding of the protein. The data support the idea that HSA loses its structure incrementally during its unfolding.  相似文献   

15.
16.
Understanding the origins of cooperativity in proteins remains an important topic in protein folding. This study describes experimental folding/unfolding equilibrium and kinetic studies of the engineered protein Ubq-UIM, consisting of ubiquitin (Ubq) fused to the sequence of the ubiquitin interacting motif (UIM) via a short linker. Urea-induced folding/unfolding profiles of Ubq-UIM were monitored by far-UV circular dichroism and fluorescence spectroscopies and compared to those of the isolated Ubq domain. It was found that the equilibrium data for Ubq-UIM is inconsistent with a two-state model. Analysis of the kinetics of folding shows similarity in the folding transition state ensemble between Ubq and Ubq-UIM, suggesting that formation of Ubq domain is independent of UIM. The major contribution to the stabilization of Ubq-UIM, relative to Ubq, was found to be in the rates of unfolding. Moreover, it was found that the kinetic m-values for Ubq-UIM unfolding, monitored by different probes (far-UV circular dichroism and fluorescence spectroscopies), are different; thereby, further supporting deviations from a two-state behavior. A thermodynamic linkage model that involves four states was found to be applicable to the urea-induced unfolding of Ubq-UIM, which is in agreement with the previous temperature-induced unfolding study. The applicability of the model was further supported by site-directed variants of Ubq-UIM that have altered stabilities of Ubq/UIM interface and/or stabilities of individual Ubq- and UIM-domains. All variants show increased cooperativity and one variant, E43N_Ubq-UIM, appears to behave very close to an equilibrium two-state.  相似文献   

17.
Apo-calmodulin, a small soluble mainly α protein, is a calcium-dependent protein activator. Calcium binding affects the calmodulin conformation but also its stability. Calcium free form unfolds between 40 and 80 °C, whereas the calcium-saturated form is stable up to temperatures as high as 100 °C, forbidding comparison of the thermal unfolding pathways of the two forms. Thus, this paper focuses especially on the conformation of pressure-induced unfolding states of both forms of calmodulin, by combining small-angle neutron scattering (SANS) with biophysical techniques such as tyrosines and ANS fluorescence. In contrast to heat denaturation (Gibrat et al., BBA, 2012), the pressure denaturation of calmodulin is reversible up to pressures of 3000 bar (300 MPa). A pressure-induced compact intermediate state has been found for the two calmodulin forms, but their unfolding pathways are different. A domain compaction and an increase of the ANS fluorescence of holo form have been evidenced. On the contrary, a domain dilatation and an ANS fluorescence decrease have been found for the apo form. The pressure induced an increase of the interdomain distance for both calmodulin forms, suggesting that the central linker of calmodulin is flexible in solution.  相似文献   

18.
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately + 2 kcal mol− 1. There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of + 2 kcal mol− 1. This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.  相似文献   

19.
Cell division protein FtsZ cooperatively self-assembles into straight filaments when bound to GTP. A set of conformational changes that are linked to FtsZ GTPase activity are involved in the transition from straight to curved filaments that eventually disassemble. In this work, we characterized the fluorescence of single Trp mutants as a reporter of the predicted conformational changes between the GDP- and GTP-states of Escherichia coli FtsZ. Steady-state fluorescence characterization showed the Trp senses different environments and displays low solvent accessibility. Time-resolved fluorescence data indicated that the main conformational changes in FtsZ occur at the interaction surface between the N and C domains, but also minor rearrangements were detected in the bulk of the N domain. Surprisingly, despite its location near the bottom protofilament interface at the C domain, the Trp 275 fluorescence lifetime did not report changes between the GDP and GTP states. The equilibrium unfolding of FtsZ features an intermediate that is stabilized by the nucleotide bound in the N-domain as well as by quaternary protein–protein interactions. In this context, we characterized the unfolding of the Trp mutants using time-resolved fluorescence and phasor plot analysis. A novel picture of the structural transition from the native state in the absence of denaturant, to the solvent-exposed unfolded state is presented. Taken together our results show that conformational changes between the GDP and GTP states of FtsZ, such as those observed in FtsZ unfolding, are restricted to the interaction surface between the N and C domains.  相似文献   

20.
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号